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1 Attacking a Block Cipher by Introducing Faults

The aim of this problem is to show how introducing some faults in a block cipher can have
a dramatic effect on its security. Throughout this exercise, we will consider a block cipher
denoted E with ¢ rounds, a block size and a key size of n bits. This block cipher simply
consists of an iteration of functions 7; and subkey additions (see Figure 1). The subkeys k;,
0 <1 < £ are all derived from the secret key k associated to E. The i-th round is denoted as
R; and the intermediate state of the plaintext p after the i-th round is denoted p;. So, we have
Ro(p) = ko ® p = po, Ri(pi—1) = Ti(pi—1) ® ki = p; for 1 <i < ¢, and the ciphertext ¢ = py.

Figure 1: The block cipher E



1. Show how the decryption algorithm works. Under which conditions can we decrypt the
ciphertexts encrypted by E?

From now on, we will assume we have a device at our disposal which allows to produce some
faults in a given implementation of E (in a smartcard, for example). Usually, one fault will
correspond to flipping one chosen bit of an intermediate state p;. We will also assume that ky
is uniformly distributed in {0,1}" and that Ty =To = ... =T, =T.

2. Here, we will produce some faults on py_1, i.e., we modify ps_1 to pj_, := pr—1 ® 9, where
0 is a bitstring of length n, with a 1 at the position of the bit we aim at modifying in the
ciphertext, and 0’s everywhere else. Let ¢’ be the ciphertext obtained when introducing
the faults 0. Find a relation between 6, py_1, ¢, and .

3. Suppose here that our device only allows us to produce some faults in the subkeys. Can
we get the same ¢ as above with such a device?
Justify your answer.

4. Assume here, that n = 12 and that T is defined as follows

T : (1,9, 23, 24) = (f(21), f(22), f(23), f(24)),

where the function f : {0,1}® — {0,1}3 is defined by the following table

x | 000|001 | 010 | O11 | 100 | 101 | 110 | 111
f(x) | 101 | 100 | 010 | 111 | 110 | 000 | 001 | 011

Now, we will try to obtain some information about one subkey. For this, we first encrypt a
plaintext p chosen randomly with uniform distribution using the target implementation of
E. Later, we encrypt again the same plaintext but we introduce some faults in py_; such
that this one is transformed in p,_1®4d, with § = (001, 000, 000, 000), i.e., we flip the last bit
of z1. Let ¢ be the ciphertext E(p) and ¢’ be the ciphertext obtained with the introduced
fault. Show that we can deduce some information on py_; when ¢ = (110, 110,010,011)
and ¢ = (100,110,010,011). How many candidate values for py_; does this leave?

5. How many candidates for the subkey k;, does this leave?

6. Let ¢, ¢ and & be as above. Set &' = ¢ @ . Compute DPT(§,§) for the above defined
transformation 7.

7. Now, we consider that n, T, and § are arbitrary again. We repeat the above experiment.
Let Ny be the number of possible remaining candidates for k, after the experiment. Give
an expression of N; depending on §, §'(= c@® ¢’), n, and T.

Justify your answer.

8. Show that N, > 2.

9. In practice, it is very difficult to produce some fault at a chosen bit position. We consider
again the experiment of question 4. except that the we produce a fault for which the bit
position is uniformly distributed at random, i.e., § is picked uniformly at random among
the bitstrings of size n with Hamming weight 1. We also assume that n = 12 and T is the
one defined in question 4. Results of the experiment provides ¢ = (101,111,010, 100) and
¢ =(101,111,110,100). How many candidate values for ky does this leave?



2 Attacks on Yi-Lam Hash Function

(Disclaimer: the first inventor happens to have the same name as one assistant at
LASEC!)
We use the following notations in this exercise:

e m: a constant equal to 64

||: concatenation of two blocks

e @: bitwise XOR

e +: addition modulo 2™

e Ex(-): a perfectly secure block cipher to encrypt m-bit plaintext under 2m-bit key K.

The Yi-Lam hash function can be described as follows: let Hil’s and Hg’s be m-bit blocks for
1 =0,1,...,n. Assume for simplicity that each message can be divided into blocks of m bits
before we hash it. Given the message M = M |[Ma]|...[[M, (M; is the i-th m-bit block of M)
and the initial value IV = (H}, H?), we compute

Hz'l = (EHZ.Q_IHMZ- (Hil—1> @ MZ) + Hi2—1 (1)
H} = EHi271||Mi(Hilfl) o H; (2)

for i =1,2,...,n. The final hash of M is the 2m-bit (H}, H?).

1. Give the complexity of a preimage attack (IV is fixed) on Yi-Lam hash function in terms
of m, supposing that it is an ideal hash scheme.

2. A faster preimage attack on Yi-Lam hash is shown in Algorithm 1. Read it carefully and
find a necessary and sufficient termination condition of the loop in Line 8.

Algorithm 1 A preimage attack on Yi-Lam hash
Inputs:

1: IV, H} H? (n is unknown)
Output:

2: M such that the Yi-Lam hash of M equals (H},
Processing:

3: repeat

4:  choose a random n

choose M1, M>, ..., M, 1 at random

5
6:  compute H,ll_l, H?
7

H)

n—1

Find M, such that H} = (H2® H} | ® M,) + H?_,
8: until a certain condition is met
9: output M = My, Ms, ..., M,

3. Compute the average number of rounds for the loop in Algorithm 1.

4. A free start collision attack on the hash function hash(IV, M) consists in finding IV, IV/, M, M’
with M # M’ such that
hash(IV, M) = hash(IV', M"), (3)



where IV, IV’ can be freely and independently chosen. Give the complexity of a free start
collision attack on the Yi-Lam hash in terms of m, supposing that it is an ideal hash
scheme.

. Find a sufficient condition(s) to hold on H{, Hf and the one-block message M = M, such
that H{ = H? always holds.

. Using the solution to the previous question, deduce a free start collision attack on Yi-Lam
hash. Estimate the attack complexity.



