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1 Attacking a Block Cipher by Introducing Faults

The aim of this problem is to show how introducing some faults in a block cipher can have
a dramatic effect on its security. Throughout this exercise, we will consider a block cipher
denoted E with ` rounds, a block size and a key size of n bits. This block cipher simply
consists of an iteration of functions Ti and subkey additions (see Figure 1). The subkeys ki,
0 ≤ i ≤ ` are all derived from the secret key k associated to E. The i-th round is denoted as
Ri and the intermediate state of the plaintext p after the i-th round is denoted pi. So, we have
R0(p) = k0 ⊕ p = p0, Ri(pi−1) = Ti(pi−1)⊕ ki = pi for 1 ≤ i ≤ `, and the ciphertext c = p`.
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Figure 1: The block cipher E
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1. Show how the decryption algorithm works. Under which conditions can we decrypt the
ciphertexts encrypted by E?

From now on, we will assume we have a device at our disposal which allows to produce some
faults in a given implementation of E (in a smartcard, for example). Usually, one fault will
correspond to flipping one chosen bit of an intermediate state pi. We will also assume that k`

is uniformly distributed in {0, 1}n and that T1 = T2 = . . . = T` = T .

2. Here, we will produce some faults on p`−1, i.e., we modify p`−1 to p′`−1 := p`−1⊕ δ, where
δ is a bitstring of length n, with a 1 at the position of the bit we aim at modifying in the
ciphertext, and 0’s everywhere else. Let c′ be the ciphertext obtained when introducing
the faults δ. Find a relation between δ, p`−1, c, and c′.

3. Suppose here that our device only allows us to produce some faults in the subkeys. Can
we get the same c′ as above with such a device?
Justify your answer.

4. Assume here, that n = 12 and that T is defined as follows

T : (x1, x2, x3, x4) 7→ (f(x1), f(x2), f(x3), f(x4)),

where the function f : {0, 1}3 → {0, 1}3 is defined by the following table

x 000 001 010 011 100 101 110 111
f(x) 101 100 010 111 110 000 001 011

Now, we will try to obtain some information about one subkey. For this, we first encrypt a
plaintext p chosen randomly with uniform distribution using the target implementation of
E. Later, we encrypt again the same plaintext but we introduce some faults in p`−1 such
that this one is transformed in p`−1⊕δ, with δ = (001, 000, 000, 000), i.e., we flip the last bit
of x1. Let c be the ciphertext E(p) and c′ be the ciphertext obtained with the introduced
fault. Show that we can deduce some information on p`−1 when c = (110, 110, 010, 011)
and c′ = (100, 110, 010, 011). How many candidate values for p`−1 does this leave?

5. How many candidates for the subkey k` does this leave?

6. Let c, c′ and δ be as above. Set δ′ = c ⊕ c′. Compute DPT (δ, δ′) for the above defined
transformation T .

7. Now, we consider that n, T , and δ are arbitrary again. We repeat the above experiment.
Let N` be the number of possible remaining candidates for k` after the experiment. Give
an expression of N` depending on δ, δ′(= c⊕ c′), n, and T .
Justify your answer.

8. Show that N` ≥ 2.

9. In practice, it is very difficult to produce some fault at a chosen bit position. We consider
again the experiment of question 4. except that the we produce a fault for which the bit
position is uniformly distributed at random, i.e., δ is picked uniformly at random among
the bitstrings of size n with Hamming weight 1. We also assume that n = 12 and T is the
one defined in question 4. Results of the experiment provides c = (101, 111, 010, 100) and
c′ = (101, 111, 110, 100). How many candidate values for k` does this leave?
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2 Attacks on Yi-Lam Hash Function

(Disclaimer: the first inventor happens to have the same name as one assistant at
LASEC!)
We use the following notations in this exercise:

• m: a constant equal to 64

• ‖: concatenation of two blocks

• ⊕: bitwise XOR

• +: addition modulo 2m

• EK(·): a perfectly secure block cipher to encrypt m-bit plaintext under 2m-bit key K.

The Yi-Lam hash function can be described as follows: let H1
i ’s and H2

i ’s be m-bit blocks for
i = 0, 1, . . . , n. Assume for simplicity that each message can be divided into blocks of m bits
before we hash it. Given the message M = M1‖M2‖ . . . ‖Mn (Mi is the i-th m-bit block of M)
and the initial value IV = (H1

0 ,H2
0 ), we compute

H1
i =

(
EH2

i−1‖Mi
(H1

i−1)⊕Mi

)
+ H2

i−1 (1)

H2
i = EH2

i−1‖Mi
(H1

i−1)⊕H1
i−1 (2)

for i = 1, 2, . . . , n. The final hash of M is the 2m-bit (H1
n,H2

n).

1. Give the complexity of a preimage attack (IV is fixed) on Yi-Lam hash function in terms
of m, supposing that it is an ideal hash scheme.

2. A faster preimage attack on Yi-Lam hash is shown in Algorithm 1. Read it carefully and
find a necessary and sufficient termination condition of the loop in Line 8.

Algorithm 1 A preimage attack on Yi-Lam hash
Inputs:
1: IV,H1

n,H2
n (n is unknown)

Output:
2: M such that the Yi-Lam hash of M equals (H1

n,H2
n)

Processing:
3: repeat
4: choose a random n
5: choose M1, M2, . . . , Mn−1 at random
6: compute H1

n−1, H
2
n−1

7: Find Mn such that H1
n = (H2

n ⊕H1
n−1 ⊕Mn) + H2

n−1

8: until a certain condition is met
9: output M = M1,M2, . . . , Mn

3. Compute the average number of rounds for the loop in Algorithm 1.

4. A free start collision attack on the hash function hash(IV, M) consists in finding IV, IV′, M, M ′

with M 6= M ′ such that
hash(IV,M) = hash(IV′,M ′), (3)
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where IV, IV′ can be freely and independently chosen. Give the complexity of a free start
collision attack on the Yi-Lam hash in terms of m, supposing that it is an ideal hash
scheme.

5. Find a sufficient condition(s) to hold on H1
0 ,H2

0 and the one-block message M = M1, such
that H1

1 = H2
1 always holds.

6. Using the solution to the previous question, deduce a free start collision attack on Yi-Lam
hash. Estimate the attack complexity.
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