
Advanced Cryptography — Final Exam

Serge Vaudenay

28.6.2010

– all documents are allowed
– a pocket calculator is allowed
– communication devices are not allowed
– answers to the exercises must be provided on a separate sheet
– readability and style of writing will be part of the grade
– do not forget to put your name on your copy!

1 Chameleon Hash Function from Σ-Protocol

In this exercise we define a partial Σ-protocol a tuple consisting of

– a relation R(x,w) holding on two words x and w called an instance and a witness respec-
tively, defining a language LR = {x;∃w R(x,w)};

– a function a = P (x,w; rP ) computing a commitment a on an instance x, a witness w, and
random coins rP ;

– a samplable domain Ex called set of challenges;
– a function for z = P (x,w, e; rP ) computing a response z on an instance x, a witness w, a

challenge e, and random coins rP ;
– a verification relation V (x, a, e, z) on an instance x, a commitment a, a challenge e, and

a response z.

We further define by Ax and Zx the set of all possible values for a and z, respectively. These
objects shall satisfy the following properties:

– R(x,w), P (x,w; rP ), P (x,w, e; rP ), and V (x, a, e, z) can be evaluated in a time which is
polynomial with respect to the length of the instance x;

– we can generate a random element of Ex with uniform distribution in a time which is
polynomial with respect to the length of x;

– for every x, w, rp, e such that e ∈ Ex and R(x,w) holds, if we define a = P (x,w; rP ) and
z = P (x,w, e; rP ), then V (x, a, e, z) holds;

The partial Σ-protocol is executed as follows:

– the prover uses as input (x,w) such that R(x,w) holds and receives some random coins
rp;

– the verifier uses as input x and receives some random coins to generate e ∈ Ex uniformly
distributed;

– the prover sends a = P (x,w; rP ) to the verifier;
– the verifier sends e to the prover;
– the prover sends z = P (x,w, e; rP ) to the verifier;
– the verifier checks that V (x, a, e, z) holds and accept.

In the case of any deviation (e.g. the final check or any computation failed), the protocol fails.



Q.1 Which objects are missing to define a Σ-protocol?

We call a strong Σ-protocol a partial Σ-protocol together with a function Hx(e, z) = a and
a function E(x, a, e, z, e′, z′) such that

– Hx(e, z) can be evaluated in a time which is polynomial for any e ∈ Ex and z ∈ Zx;
– E(x, a, e, z, e′, z′) can be evaluated in a time which is polynomial for any a ∈ Ax, e, e

′ ∈ Ex,
and z, z′ ∈ Zx;

– we can generate a random elements of Zx with uniform distribution in a time which is
polynomial with respect to the length of x;

– for all x, e ∈ Ex, z ∈ Zx, V (x,Hx(e, z), e, z) holds;
– honestly executing the partial Σ-protocol makes z uniformly distributed in Zx and inde-

pendent from e;
– for all x, a ∈ Ax, e ∈ Ex, and z ∈ Zx, V (x, a, e, z) holds if and only if a = Hx(e, z);
– for every x, a, e, e′, z, z′ such that e, e′ ∈ Ex, z, z

′ ∈ Zx, (e, z) 6= (e′, z′), V (x, a, e, z) holds,
and V (x, a, e′, z′) holds, if we define w = E(x, a, e, z, e′, z′), then R(x,w) holds.

Q.2 What is the difference between the hypothesis on E and the special soundness property
of Σ-protocols?
Show that a strong Σ-protocol is a Σ-protocol.

Q.3 Show that given x and w such that R(x,w) holds, we can create a collision on the function
Hx.

Q.4 Show that given x ∈ LR, finding a collision on Hx implies finding a witness for x ∈ LR.
Deduce that if R is such that given x ∈ LR it is hard to find w such that R(x,w) holds, we
can define a trapdoor collision resistant hash function by using x as a common reference
string.

Q.5 Recall the Goldwasser-Micali-Wigderson Σ-protocol based on graph isomorphism.
Show that the Golwasser-Micali-Wigderson Σ-protocol is not a strong Σ-protocol.

Q.6 Recall the Fiat-Shamir Σ-protocol.
Show that the Fiat Shamir Σ-protocol is not a strong Σ-protocol.

Q.7 Recall the Schnorr Σ-protocol.
Show that the Schnorr Σ-protocol is a strong Σ-protocol.
Deduce a trapdoor hash function based on this protocol. Does it remind you something?



2 Instances of the ElGamal

Let p be a large prime number and g be an element of Z∗
p. We denote by q the order of g.

We let G be a subgroup of Z∗
p which include g. We let M = {0, 1}` be the message space. We

assume an injective function e : M → G which is called an embedding function. We further
assume that given a random m ∈ M, e(m) “looks like” uniformly distributed in G. In this
exercise, we consider the ElGamal cryptosystem using domain parameters (p, g, q, e) with
different choices on how to select them. Namely, a secret key is a value x ∈ Zq, its public key
is y = gx mod p. For any message m ∈ M, the encryption of m with public key y is a pair
(u, v) such that u = gr with r ∈ Zq random and v = e(m)yr. The decryption of (u, v) with
secret key x is m = e−1(vu−x).

Q.1 We assume here that g is a generator of Z∗
p. What is the value of q?

Is the cryptosystem IND-CPA secure? Why?
Q.2 We assume here that q is prime and that G = Z∗

p.
Is the cryptosystem IND-CPA secure? Why?

Q.3 We assume here that q is a large prime but much smaller than p, and that G is generated
by g.
Is the cryptosystem IND-CPA secure? Why?
In practice, how to propose an efficient embedding function e?

Q.4 We assume here that p = 1 + 2q with q prime and that G is generated by g.
Is the cryptosystem IND-CPA secure? Why?
Show that G is the subgroup of all quadratic residues in Z∗

p.

Compute
(
−1
p

)
.

Deduce that for any x ∈ Z∗
p then either x or −x is in G.

Finally, if ` = blog2 qc, propose a practical embedding function e.



3 Trusted Agent Setup

In this exercise we consider protocols between two participants A and B involving a trusted
third participant C. This participant C is assumed to always be honest, which means that he
always follows the protocol he is expected to follow. We further assume that communication
channels between the participants are authenticated and protect message integrity.

As an example we can specify this way a commitment protocol in which A can commit
on a value x to B:

– A’s protocol: send the input x to C
– C’s protocol: receive some message x′ form A then send a message “commit” to B
– B’s protocol: receive a message form C and check that it is “commit”

For the opening phase:

– A’s protocol: send a message “open” to C
– C’s protocol: receive a message from A, check that it is “open”, and send x′ to B
– B’s protocol: receive a message x′′ from C and take it as the output

The protocol is perfectly hiding since what B receives in the commit phase is independent
from x. The protocol is perfectly binding since whatever x′′ that B receives from C must be
equal to x′ (due to message integrity and authentication assumption) sent by C which must
be the x′ received by C in the first phase (due to the honesty assumption on C), which must
be equal to x (due to message integrity and authentication assumption).

Q.1 Propose a zero-knowledge proof of knowledge for a relation R(x,w) in which A can prove
to B that he knows w such that the predicate R(x,w) holds, being given a public x. The
protocol shall be perfectly complete, perfectly sound, and perfectly zero-knowledge.
Specify the protocol/algorithm for A, B, and C.

We now change the setup assumption a bit. We assume that there are several participants
C1, . . . , Cn such that when queried for the first time with a program p they boot on this
program and follow it honestly. Additionally, participants can query them with a special query
“Code” on which they return by p so that we can see what program they were booted with.
These extra participants called trusted agents can have a pseudorandom generator embedded.

Q.2 Redo the previous question in this model.
Q.3 For any proof system in the standard model (that is, who does not involve any trusted

agent), show that a malicious adversary using a trusted agent can break the deniability
property. Namely, the malicious verifier can later prove that w such that R(x,w) holds is
known by someone.


