
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

28.6.2010

– all documents are allowed
– a pocket calculator is allowed
– communication devices are not allowed
– answers to the exercises must be provided on a separate sheet
– readability and style of writing will be part of the grade
– do not forget to put your name on your copy!

1 Chameleon Hash Function from Σ-Protocol

This exercise is inspired from Bellare-Ristov, Hash Functions from Sigma Protocols
and Improvements to VSH, published in the proceedings of ASIACRYPT 2008, LNCS
vol. 5350, Springer.

In this exercise we define a partial Σ-protocol a tuple consisting of

– a relation R(x,w) holding on two words x and w called an instance and a witness respec-
tively, defining a language LR = {x;∃w R(x,w)};

– a function a = P (x,w; rP ) computing a commitment a on an instance x, a witness w, and
random coins rP ;

– a samplable domain Ex called set of challenges;
– a function for z = P (x,w, e; rP ) computing a response z on an instance x, a witness w, a

challenge e, and random coins rP ;
– a verification relation V (x, a, e, z) on an instance x, a commitment a, a challenge e, and

a response z.

We further define by Ax and Zx the set of all possible values for a and z, respectively. These
objects shall satisfy the following properties:

– R(x,w), P (x,w; rP ), P (x,w, e; rP ), and V (x, a, e, z) can be evaluated in a time which is
polynomial with respect to the length of the instance x;

– we can generate a random element of Ex with uniform distribution in a time which is
polynomial with respect to the length of x;

– for every x, w, rp, e such that e ∈ Ex and R(x,w) holds, if we define a = P (x,w; rP ) and
z = P (x,w, e; rP ), then V (x, a, e, z) holds;

The partial Σ-protocol is executed as follows:

– the prover uses as input (x,w) such that R(x,w) holds and receives some random coins
rp;

– the verifier uses as input x and receives some random coins to generate e ∈ Ex uniformly
distributed;



– the prover sends a = P (x,w; rP ) to the verifier;
– the verifier sends e to the prover;
– the prover sends z = P (x,w, e; rP ) to the verifier;
– the verifier checks that V (x, a, e, z) holds and accept.

In the case of any deviation (e.g. the final check or any computation failed), the protocol fails.

Q.1 Which objects are missing to define a Σ-protocol?

An extractor E(x, a, e, z, e′, z′) to compute a witness from two accepted transcripts
(a, e, z) and (a, e′, z′) with same commitment a and different challenges e 6= e′, and
a simulator S(x, e; rS) to generate a transcript (a, e, z) from x and e with correct
distribution.

We call a strong Σ-protocol a partial Σ-protocol together with a function Hx(e, z) = a and
a function E(x, a, e, z, e′, z′) such that

– Hx(e, z) can be evaluated in a time which is polynomial for any e ∈ Ex and z ∈ Zx;
– E(x, a, e, z, e′, z′) can be evaluated in a time which is polynomial for any a ∈ Ax, e, e

′ ∈ Ex,
and z, z′ ∈ Zx;

– we can generate a random elements of Zx with uniform distribution in a time which is
polynomial with respect to the length of x;

– for all x, e ∈ Ex, z ∈ Zx, V (x,Hx(e, z), e, z) holds;
– honestly executing the partial Σ-protocol makes z uniformly distributed in Zx and inde-

pendent from e;
– for all x, a ∈ Ax, e ∈ Ex, and z ∈ Zx, V (x, a, e, z) holds if and only if a = Hx(e, z);
– for every x, a, e, e′, z, z′ such that e, e′ ∈ Ex, z, z

′ ∈ Zx, (e, z) 6= (e′, z′), V (x, a, e, z) holds,
and V (x, a, e′, z′) holds, if we define w = E(x, a, e, z, e′, z′), then R(x,w) holds.

Q.2 What is the difference between the hypothesis on E and the special soundness property
of Σ-protocols?

Now it works whenever (e, z) 6= (e′, z′) instead of e 6= e′. Somehow, the new property
for E is stronger than the property of special soundness.

Show that a strong Σ-protocol is a Σ-protocol.

Computability and completeness are already satisfied by the definition of a partial
Σ-protocol. Special soundness is implied by the new definition of E. We construct
a simulator S(x, e; r) = (Hx(e, z), e, z) where z ∈ Zx is generated with uniform
distribution in Zx given r. The honest execution of the protocol with instance x
generates a transcript (a, e, z) with a given distribution such that V (x, a, e, z) holds
and e is uniformly distributed in Ex. Due to the definition of strong Σ-protocols, z
is uniformly distributed and independent from e and a = Hx(e, z). So, the transcript
has the same distribution as the one from the S(x, e; r) when e ∈ Ex is random.

Q.3 Show that given x and w such that R(x,w) holds, we can create a collision on the function
Hx.



With some random rP and two different e, e′ ∈ Ex we can compute a = P (x,w; rP ),
z = P (x,w, e; rP ), and z′ = P (x,w, e′; rP ). Since V (x, a, e, z) and V (x, a, e′, z′) hold,
we must have a = Hx(e, z) and a = Hx(e

′, z′), so Hx(e, z) = Hx(e
′, z′). Since e 6= e′,

this is a collision.

Q.4 Show that given x ∈ LR, finding a collision on Hx implies finding a witness for x ∈ LR.

Assume that a = Hx(e, z) = Hx(e
′, z′) with (e, z) 6= (e′, z′). We know that V (a, e, z)

and V (a, e′, z′) hold due to the property of a strong Σ-protocol. Since (e, z) 6= (e′, z′),
w = E(x, a, e, z, e′, z′) is a witness for x.

Deduce that if R is such that given x ∈ LR it is hard to find w such that R(x,w) holds, we
can define a trapdoor collision resistant hash function by using x as a common reference
string.

We generate x and w such that R(x,w) holds and declare x as being the common
reference string. Then, w is a trapdoor. We have shown that making a collision
implies recovering the trapdoor so Hx is collision-resistant.

Q.5 Recall the Goldwasser-Micali-Wigderson Σ-protocol based on graph isomorphism.

The relation is R((G0, G1), ϕ) where the witness ϕ is invertible and such that
ϕ(G0) = G1

Prover Verifier
ϕ st ϕ(G0) = G1 (G0, G1)
pick π invertible pick e ∈ {0, 1}

H = π(G0)
H−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−

σ = π ◦ ϕ−e σ−−−−−−−−−−−−−→ σ(Ge)
?
= H

Show that the Golwasser-Micali-Wigderson Σ-protocol is not a strong Σ-protocol.

If we have a non-trivial automorphism τ of the graph Ge, then if (H, e, σ) is an
accepted transcript, then (H, e, σ ◦ τ) as well. However, we cannot extract a witness
from the two transcripts.

Q.6 Recall the Fiat-Shamir Σ-protocol.

The relation R((n, v), s) holds if and only if s2v mod n = 1.

Prover Verifier
s st s2v mod n = 1 (n, v)

pick r ∈ Z∗
n pick e ∈ {0, 1}

x = r2 mod n
x−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−

y = rse mod n
y−−−−−−−−−−−−−→ y2ve mod n

?
= x



Show that the Fiat Shamir Σ-protocol is not a strong Σ-protocol.

We can have two accepted transcripts (x, e, y) and (x, e,−y mod n) with same x
which are not enough to extract a witness.

Q.7 Recall the Schnorr Σ-protocol.

The relation R((G, q, g, y), x) holds if and only if gx = y in group G, where q is a
prime greater than 2t, and g has order q in G.

Prover Verifier
x st gx = y (G, q, g, y)
pick k ∈ Zq pick e ∈ {1, . . . , 2t}

r = gk
r−−−−−−−−−−−−−→ q prime > 2t
e←−−−−−−−−−−−−− g, y of order q

s = ex+ k mod q
s−−−−−−−−−−−−−→ rye

?
= gs

Show that the Schnorr Σ-protocol is a strong Σ-protocol.

If (r, e, s) and (r, e′, s′) are accepted transcripts, we have s, s′ ∈ Zq, ry
e = gs and

rye
′
= gs

′
. If e 6= e′ we know that we can extract a witness. If e = e′, we obtain that

gs = gs
′
. Since g has order q, we must have s = s′ in Zq. This is not possible if

(e, s) 6= (e′, s′).
Furthermore, (r, e, s) is accepted if and only if r = gsy−e so we can define Hy(e, s) =
gsy−e.
Finally, s is uniformly distributed in Zq. So, we have a strong Σ-protocol.

Deduce a trapdoor hash function based on this protocol. Does it remind you something?

Let x be a trapdoor and y = gx be a CRS. We define Hy(e, s) = gsy−e which looks
like the Pedersen commitment.



2 Instances of the ElGamal

Let p be a large prime number and g be an element of Z∗
p. We denote by q the order of g.

We let G be a subgroup of Z∗
p which include g. We letM = {0, 1}` be the message space. We

assume an injective function e :M → G which is called an embedding function. We further
assume that given a random m ∈ M, e(m) “looks like” uniformly distributed in G. In this
exercise, we consider the ElGamal cryptosystem using domain parameters (p, g, q, e) with
different choices on how to select them. Namely, a secret key is a value x ∈ Zq, its public key
is y = gx mod p. For any message m ∈ M, the encryption of m with public key y is a pair
(u, v) such that u = gr with r ∈ Zq random and v = e(m)yr. The decryption of (u, v) with
secret key x is m = e−1(vu−x).

Q.1 We assume here that g is a generator of Z∗
p. What is the value of q?

q = p− 1.

Is the cryptosystem IND-CPA secure? Why?

The IND-CPA security is equivalent to the hardness of the decisional Diffie-Hellman
problem with generator g. However, the order of g is even so the least significant bit
of the discrete logarithm of any z ∈ Zp is easy to compute from the Legendre symbol(
z
p

)
. Hence, we can easily distinguish (g, gx, gr, gxr) from (g, gx, gr, gs) by checking

that the least significant bit of xr is the product of the least significant bits of x and
r.
Indeed, and adversary can select two messages m0 and m1 such that the least sig-
nificant bit of log e(mb) is b. (Given a random m, log e(m) is a random bit with
distribution close to uniform, so we can easily find m0 and m1.) Then, given the
encryption (u, v) of mb, he can compute b = log(vu−x) = log v − (log y) log u. So,
the ElGamal cryptosystem is not IND-CPA secure.

Q.2 We assume here that q is prime and that G = Z∗
p.

Is the cryptosystem IND-CPA secure? Why?

The same IND-CPA adversary works here. So, the ElGamal cryptosystem is not
IND-CPA secure.

Q.3 We assume here that q is a large prime but much smaller than p, and that G is generated
by g.
Is the cryptosystem IND-CPA secure? Why?

In this case, the decisional Diffie-Hellman problem is assumed to be hard. We know
that the IND-CPA security in this case is equivalent to the decisional Diffie-Hellman
problem. So, the ElGamal cryptosystem is IND-CPA secure.

In practice, how to propose an efficient embedding function e?

It is pretty hard because e must be invertible in practice.



Q.4 We assume here that p = 1 + 2q with q prime and that G is generated by g.
Is the cryptosystem IND-CPA secure? Why?

Yes. This is a particular case of the previous question.

Show that G is the subgroup of all quadratic residues in Z∗
p.

We know that the group of quadratic residues include exactly p−1
2 = q elements. We

know that G has q elements. Furthermore, g
p−1
2 = gq = 1 so g is a quadratic residue.

So, all elements of G are quadratic residues. Therefore, all quadratic residues are in
G.

Compute
(
−1
p

)
.

We have (−1)
p−1
2 = (−1)q = −1 so the Legendre symbol is −1.

Deduce that for any x ∈ Z∗
p then either x or −x is in G.

Either x or −x is a quadratic residue but not both since −1 is not a quadratic residue.
So, either x or −x is in G.

Finally, if ` = blog2 qc, propose a practical embedding function e.

Let e0(m) − 1 be the integer with binary expansion m. We have 0 < e0(m) ≤ q.

Let now e(m) = e0(m) if
(
e0(m)

p

)
= +1 and e(m) = −e0(m) otherwise. We have

e(m) ∈ G. Since we cannot have e(m) = e(m′) whenever m 6= m′, this is a practical
embedding function. Its inverse is also easy to compute.



3 Trusted Agent Setup

This exercise is inspired from Mateus-Vaudenay, On Tamper-Resistance from a The-
oretical Viewpoint: The Power of Seals, published in the proceedings of CHES 2009,
LNCS vol. 5747, Springer.

In this exercise we consider protocols between two participants A and B involving a trusted
third participant C. This participant C is assumed to always be honest, which means that he
always follows the protocol he is expected to follow. We further assume that communication
channels between the participants are authenticated and protect message integrity.

As an example we can specify this way a commitment protocol in which A can commit
on a value x to B:

– A’s protocol: send the input x to C
– C’s protocol: receive some message x′ form A then send a message “commit” to B
– B’s protocol: receive a message form C and check that it is “commit”

For the opening phase:

– A’s protocol: send a message “open” to C
– C’s protocol: receive a message from A, check that it is “open”, and send x′ to B
– B’s protocol: receive a message x′′ from C and take it as the output

The protocol is perfectly hiding since what B receives in the commit phase is independent
from x. The protocol is perfectly binding since whatever x′′ that B receives from C must be
equal to x′ (due to message integrity and authentication assumption) sent by C which must
be the x′ received by C in the first phase (due to the honesty assumption on C), which must
be equal to x (due to message integrity and authentication assumption).

Q.1 Propose a zero-knowledge proof of knowledge for a relation R(x,w) in which A can prove
to B that he knows w such that the predicate R(x,w) holds, being given a public x. The
protocol shall be perfectly complete, perfectly sound, and perfectly zero-knowledge.
Specify the protocol/algorithm for A, B, and C.

– A’s protocol: send x and w to C
– C’s protocol: receive x′ and w′ from A, verify that R(x′, w′) holds, and send x′

to B
– B’s protocol: receive x′′ from C and verify that x = x′′

Clearly, this protocol is perfectly complete: if everyone is honest, B always accept.
If A is malicious and B accept, it must have received x form C. Since C is honest
and has sent x (due to the assumption on the channel), he must have received x and
w′ such that R(x,w′) holds. So, A must have sent w′ such that R(x,w′) holds (due
to the assumption on the channel). Thus, by running the algorithm on the malicious
A we can extract w′ such that R(x,w′) holds. This protocol is thus perfectly sound.
Clearly, what B sees (namely: x) can be simulated. So, the protocol is perfectly zero-
knowledge.



We now change the setup assumption a bit. We assume that there are several participants
C1, . . . , Cn such that when queried for the first time with a program p they boot on this
program and follow it honestly. Additionally, participants can query them with a special query
“Code” on which they return by p so that we can see what program they were booted with.
These extra participants called trusted agents can have a pseudorandom generator embedded.

Q.2 Redo the previous question in this model.

– A’s protocol: send code p to a new Ci, then send x and w to Ci and i to B
– code p: receive x′ and w′ from a participant P , verify that R(x′, w′) holds, and

send [P, x′] to B
– B’s protocol: receive i′ from A, send “Code” to Ci′, receive p

′, then receive [P ′, x′′]
from Cj, verify that i′ = j, p′ = p, P ′ = A, and x = x′′

The updated proof is straightforward.

Q.3 For any proof system in the standard model (that is, who does not involve any trusted
agent), show that a malicious adversary using a trusted agent can break the deniability
property. Namely, the malicious verifier can later prove that w such that R(x,w) holds is
known by someone.

We use a malicious verifier who program the following code p, boot a trusted agent
with p, then forward all message between A and the trusted agent. Code p works as
follows:
– simulate the honest verifier algorithm
– if succeeds, answer any query by the message “x proven”
After the protocol succeeds, a new participant D can query B’s trusted agent and
receive the message “x proven”. Clearly, no simulator can end up to such state.


