${\it Advanced \ Cryptography-Midterm \ Exam}$

Serge Vaudenay

3.5.2011

- duration: 3h30
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- readability and style of writing will be part of the grade
- it is unlikely we will answer any technical question during the exam
- do not forget to put your full name on your copy!

I A Crazy Cryptosystem

We define a new RSA-like public-key cryptosystem.

- For key generation, we generate two different prime numbers p and q of $\ell + 1$ bits and larger than 2^{ℓ} , and make N = pq. Then, we pick a random α between 0 and p 1 and compute $a = 1 + \alpha p$. The public key is (a, N) and the secret key is p.
- To encrypt a message x of at most ℓ bits, the sender computes $y = xa^r \mod N$ for a random r.
- To decrypt y, the receiver computes $x = y \mod p$.
- Q.1 Give the complexity of the three algorithms. What is the advantage with respect to RSA?
- Q.2 Show that the correctness property of the cryptosystem is satisfied.
- Q.3 Show that the decryption problem is as hard as the key recovery problem.
- Q.4 Show that key recovery is easy.

II The DDH Problem and Bilinear Maps

We consider a (multiplicatively denoted) finite group $G = \langle g \rangle$ generated by some g element. We assume that there is a map e from $G \times G$ to some group H such that

- #G = #H;
- -h = e(g,g) generates H;
- for all $a, b, c \in G$, e(ab, c) = e(a, c)e(b, c).
- for all $a, b, c \in G$, e(a, bc) = e(a, b)e(a, c).

We call e a *bilinear map*.

- **Q.1** Show that for all integers x, y, we have $e(g^x, g^y) = h^{xy}$.
- **Q.2** Recall what is the Decisional Diffie-Hellman (DDH) problem in group G.
- **Q.3** Show that the DDH problem in G is easy to solve when it is easy to compute e.
- **Q.4** Show that if the Discrete Logarithm problem is easy in H, then it is easy in G as well.

Almost Bent Functions TIT

In this exercise, we consider a function f mapping n bits to n bits. We define two functions DP^f and LP^f mapping two strings of n bits to a real number by

$$\mathsf{DP}^{f}(a,b) = \Pr[f(X \oplus a) \oplus f(X) = b]$$
$$\mathsf{LP}^{f}(\alpha,\beta) = (2\Pr[\alpha \cdot X = \beta \cdot f(X)] - 1)^{2}$$

where X is uniformly distributed in $\{0,1\}^n$, \oplus represents the bitwise exclusive-OR of two bitstrings, and $u \cdot v$ represents the parity of the bitwise AND of two bitstrings, i.e.

$$(u_1,\ldots,u_n)\cdot(v_1,\ldots,v_n)=(u_1v_1+\cdots+u_nv_n) \mod 2$$

In this problem, we define

$$\mathsf{DP}_{\max}^{f} = \max_{\substack{(a,b) \neq (0,0)}} \mathsf{DP}^{f}(a,b)$$
$$\mathsf{LP}_{\max}^{f} = \max_{\substack{(\alpha,\beta) \neq (0,0)}} \mathsf{LP}^{f}(\alpha,\beta)$$

Our purpose is to minimize DP_{\max}^f and LP_{\max}^f . We recall that $\mathsf{DP}^f(a, b)$ and $\mathsf{LP}^f(\alpha, \beta)$ are always in the [0, 1] interval, that $\mathsf{DP}^f(0, b) \neq 0$ if and only if b = 0, that $\mathsf{LP}^f(\alpha, 0) \neq 0$ if and only if $\alpha = 0$, and that for all a, $\sum_{b} \mathsf{DP}^{f}(a, b) = 1$. We further recall the two link formulas between DP^f and LP^f coming from the Fourier transform:

$$\mathsf{DP}^{f}(a,b) = 2^{-n} \sum_{\alpha,\beta} (-1)^{(a\cdot\alpha) \oplus (b\cdot\beta)} \mathsf{LP}^{f}(\alpha,\beta)$$
$$\mathsf{LP}^{f}(\alpha,\beta) = 2^{-n} \sum_{a,b} (-1)^{(a\cdot\alpha) \oplus (b\cdot\beta)} \mathsf{DP}^{f}(a,b)$$

Part 1: Preliminaries

- **Q.1a** Show that for all β , $\sum_{\alpha} \mathsf{LP}^{f}(\alpha, \beta) = 1$. **Q.1b** Show that $\sum_{a,b} (\mathsf{DP}^{f}(a, b))^{2} = \sum_{\alpha,\beta} (\mathsf{LP}^{f}(\alpha, \beta))^{2}$.

Hint₁:
$$\sum_{x} \left(\sum_{y} g(x, y) \right)^2 = \sum_{x,y,z} g(x, y) g(x, z)$$
. Do not be afraid of big sums!
Hint₂: remember your other classes on the Fourier transform.

Part 2: APN functions

Q.2a Show that $\mathsf{DP}_{\max}^f \geq 2^{1-n}$. In the case of an equality, we say that f is Almost Perfect Nonlinear (APN).

Hint: First show that $2^n \mathsf{DP}^f(a, b)$ is an even integer.

Q.2b Show that f is an APN function if and only if for all a and b such that $(a, b) \neq (0, 0)$, we have either $\mathsf{DP}^f(a, b) = 2^{1-n}$ or $\mathsf{DP}^f(a, b) = 0$.

Part 3: AB functions

- **Q.3a** Show that $\sum_{\alpha} \sum_{\beta \neq 0} \left(\mathsf{LP}^f(\alpha, \beta) \right)^2 \ge 2^{1-n} (2^n 1).$
- Hint: use Q.1b and observe that $(\mathsf{DP}^f(a,b))^2 \ge 2^{1-n}\mathsf{DP}^f(a,b)$ Q.3b Show that $\mathsf{LP}^f_{\max} \ge \frac{\sum_{\alpha} \sum_{\beta \neq 0} (\mathsf{LP}^f(\alpha,\beta))^2}{\sum_{\alpha} \sum_{\beta \neq 0} \mathsf{LP}^f(\alpha,\beta)}$ with equality if and only if for all α, β with $\beta \neq 0$, we have either $\mathsf{LP}^f(\alpha,\beta) = 0$ or $\mathsf{LP}^f(\alpha,\beta) = \mathsf{LP}^f_{\max}$. Q.3c Show that $\mathsf{LP}^f_{\max} \ge 2^{1-n}$. In the case of an equality, we say that f is Almost Bent
- (AB).
- **Q.3d** Show that f is an AB function if and only if for all α and β such that $(\alpha, \beta) \neq (0, 0)$, we have either $\mathsf{LP}^f(\alpha, \beta) = 2^{1-n}$ or $\mathsf{LP}^f(\alpha, \beta) = 0$.
- **Q.3e** Show that if f is an AB function, then it is APN as well.

IV Analyzing Two-Time Pad

We consider the Vernam cipher defined by $\operatorname{Enc}_K(X) = x \oplus K$, where the plaintext X and the key K are two bitstrings of length n, independent random variables, and K is uniformly distributed. We assume that X comes from a biased source with a given distribution. The purpose of this exercise is to analyze the information loss when we encrypt two random plaintexts X and Y with the same key K. We assume that X, Y, and K are independent random variables, that X and Y are identically distributed, and that K is uniformly distributed.

Part 1: Preliminaries

- **Q.1a** Show that for all x and y, $\Pr[\mathsf{Enc}_K(X) = x, \mathsf{Enc}_K(Y) = y] = 2^{-n} \Pr[X \oplus Y = x \oplus y].$
- **Q.1b** Deduce that the statistical distance between $(Enc_K(X), Enc_K(Y))$ and a uniformly distributed 2*n*-bit string is the same as the statistical distance between $X \oplus Y$ and a uniformly distributed *n*-bit string.
- Q.1c Further show that this is similar for the Euclidean distance.

Part 2: Best distinguisher with a single sample

- **Q.2a** What is the best advantage to distinguish $(Enc_K(X), Enc_K(Y))$ from a uniformly distributed 2*n*-bit string using a single sample?
- **Q.2b** As an application, assume that X consists of a uniformly distributed random string of n-1 bits followed by a parity bit, i.e. a bit set to 1 if and only if there is an odd number of 1's amount the n-1 other bits. Describe an optimal distinguisher with a single query and compute its advantage.

Part 3: Best distinguisher with many samples

- **Q.3a** How many samples do we need (roughly) to distinguish $(Enc_K(X), Enc_K(Y))$ from a uniformly distributed 2*n*-bit string with a good advantage?
- Q.3b Approximate this in terms of squared Euclidean distance.