
Advanced Cryptography — Midterm Exam

Serge Vaudenay

3.5.2011

– duration: 3h30
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– readability and style of writing will be part of the grade
– it is unlikely we will answer any technical question during the exam
– do not forget to put your full name on your copy!



I A Crazy Cryptosystem

We define a new RSA-like public-key cryptosystem.

– For key generation, we generate two different prime numbers p and q of ℓ + 1 bits and
larger than 2ℓ, and make N = pq. Then, we pick a random α between 0 and p − 1 and
compute a = 1 + αp. The public key is (a,N) and the secret key is p.

– To encrypt a message x of at most ℓ bits, the sender computes y = xar mod N for a
random r.

– To decrypt y, the receiver computes x = y mod p.

Q.1 Give the complexity of the three algorithms. What is the advantage with respect to RSA?
Q.2 Show that the correctness property of the cryptosystem is satisfied.
Q.3 Show that the decryption problem is as hard as the key recovery problem.
Q.4 Show that key recovery is easy.

II The DDH Problem and Bilinear Maps

We consider a (multiplicatively denoted) finite group G = ⟨g⟩ generated by some g element.
We assume that there is a map e from G×G to some group H such that

– #G = #H;
– h = e(g, g) generates H;
– for all a, b, c ∈ G, e(ab, c) = e(a, c)e(b, c).
– for all a, b, c ∈ G, e(a, bc) = e(a, b)e(a, c).

We call e a bilinear map.

Q.1 Show that for all integers x, y, we have e(gx, gy) = hxy.
Q.2 Recall what is the Decisional Diffie-Hellman (DDH) problem in group G.
Q.3 Show that the DDH problem in G is easy to solve when it is easy to compute e.
Q.4 Show that if the Discrete Logarithm problem is easy in H, then it is easy in G as well.



III Almost Bent Functions

In this exercise, we consider a function f mapping n bits to n bits. We define two functions
DPf and LPf mapping two strings of n bits to a real number by

DPf (a, b) = Pr[f(X ⊕ a)⊕ f(X) = b]

LPf (α, β) = (2Pr[α ·X = β · f(X)]− 1)2

where X is uniformly distributed in {0, 1}n, ⊕ represents the bitwise exclusive-OR of two
bitstrings, and u · v represents the parity of the bitwise AND of two bitstrings, i.e.

(u1, . . . , un) · (v1, . . . , vn) = (u1v1 + · · ·+ unvn) mod 2

In this problem, we define

DPf
max = max

(a,b)̸=(0,0)
DPf (a, b)

LPf
max = max

(α,β) ̸=(0,0)
LPf (α, β)

Our purpose is to minimize DPf
max and LPf

max. We recall that DPf (a, b) and LPf (α, β) are
always in the [0, 1] interval, that DPf (0, b) ̸= 0 if and only if b = 0, that LPf (α, 0) ̸= 0 if and
only if α = 0, and that for all a,

∑
bDP

f (a, b) = 1. We further recall the two link formulas
between DPf and LPf coming from the Fourier transform:

DPf (a, b) = 2−n
∑
α,β

(−1)(a·α)⊕(b·β)LPf (α, β)

LPf (α, β) = 2−n
∑
a,b

(−1)(a·α)⊕(b·β)DPf (a, b)

Part 1: Preliminaries
Q.1a Show that for all β,

∑
α LP

f (α, β) = 1.
Q.1b Show that

∑
a,b(DP

f (a, b))2 =
∑

α,β(LP
f (α, β))2.

Hint1:
∑

x

(∑
y g(x, y)

)2
=

∑
x,y,z g(x, y)g(x, z). Do not be afraid of big sums!

Hint2: remember your other classes on the Fourier transform.
Part 2: APN functions

Q.2a Show that DPf
max ≥ 21−n. In the case of an equality, we say that f is Almost Perfect

Nonlinear (APN).
Hint: First show that 2nDPf (a, b) is an even integer.

Q.2b Show that f is an APN function if and only if for all a and b such that (a, b) ̸= (0, 0),
we have either DPf (a, b) = 21−n or DPf (a, b) = 0.

Part 3: AB functions
Q.3a Show that

∑
α

∑
β ̸=0

(
LPf (α, β)

)2
≥ 21−n(2n − 1).

Hint: use Q.1b and observe that (DPf (a, b))2 ≥ 21−nDPf (a, b)

Q.3b Show that LPf
max ≥

∑
α

∑
β ̸=0(LP

f (α,β))
2∑

α

∑
β ̸=0

LPf (α,β)
with equality if and only if for all α, β with

β ̸= 0, we have either LPf (α, β) = 0 or LPf (α, β) = LPf
max.

Q.3c Show that LPf
max ≥ 21−n. In the case of an equality, we say that f is Almost Bent

(AB).
Q.3d Show that f is an AB function if and only if for all α and β such that (α, β) ̸= (0, 0),

we have either LPf (α, β) = 21−n or LPf (α, β) = 0.
Q.3e Show that if f is an AB function, then it is APN as well.



IV Analyzing Two-Time Pad

We consider the Vernam cipher defined by EncK(X) = x ⊕ K, where the plaintext X and
the key K are two bitstrings of length n, independent random variables, and K is uniformly
distributed. We assume that X comes from a biased source with a given distribution. The
purpose of this exercise is to analyze the information loss when we encrypt two random plain-
texts X and Y with the same key K. We assume that X, Y , and K are independent random
variables, that X and Y are identically distributed, and that K is uniformly distributed.

Part 1: Preliminaries
Q.1a Show that for all x and y, Pr[EncK(X) = x,EncK(Y ) = y] = 2−n Pr[X ⊕ Y = x⊕ y].
Q.1b Deduce that the statistical distance between (EncK(X),EncK(Y )) and a uniformly

distributed 2n-bit string is the same as the statistical distance between X ⊕ Y and a
uniformly distributed n-bit string.

Q.1c Further show that this is similar for the Euclidean distance.
Part 2: Best distinguisher with a single sample

Q.2a What is the best advantage to distinguish (EncK(X),EncK(Y )) from a uniformly dis-
tributed 2n-bit string using a single sample?

Q.2b As an application, assume that X consists of a uniformly distributed random string
of n − 1 bits followed by a parity bit, i.e. a bit set to 1 if and only if there is an odd
number of 1’s amount the n − 1 other bits. Describe an optimal distinguisher with a
single query and compute its advantage.

Part 3: Best distinguisher with many samples
Q.3a How many samples do we need (roughly) to distinguish (EncK(X),EncK(Y )) from a

uniformly distributed 2n-bit string with a good advantage?
Q.3b Approximate this in terms of squared Euclidean distance.


