
Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

7.5.2012

– duration: 3h00
– any document is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– the answers to each exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 Decryption Attack on Broadcast RC4

This exercise is inspired from Isobe-Ohigashi-Watanabe-Morii, Full Plaintext Re-
covery Attack on Broadcast RC4, to be published in the proceedings of FSE 2013,
LNCS, Springer.

The RC4 pseudorandom number generator is defined by a state and an algorithm which
update the state and produces an output byte. In RC4, a state is defined by

– two indices i and j in Z256;
– one permutation S of Z256.

By abuse of notation we write S(x) for an arbitrary integer x as for S(x mod 256). The state
update and output algorithm works as follows:

1: i← i+ 1
2: j ← j + S(i)
3: exchange the values at position S(i) and S(j) in table S
4: output zi = S(S(i) + S(j))

Q.1 Assume that the initial S is a random permutation with uniform distribution and that i
and j are set to 0.

Q.1a What is the probability that [S(1) 6= 2 and S(2) = 0]?

It is 1
N ×

N−2
N−1 with N = 256.

Q.1b If S(1) 6= 2 and S(2) = 0 hold, show that the second output z2 is always 0.

Let S(1) = x and S(x) = y initially. At the first iteration, i is set to 1, j is set to x,
and S(1) and S(x) are exchanged. There values become y and x respectively. Then,
i is set to 2, j is set to x again, and S(2) and S(x) are exchanged. There values
become x and 0 respectively. The output is S(x) which is 0.



Q.1c In other cases, we assume that z2 = 0 with probability close to 1
256 .

Deduce p = Pr[z2 = 0]. What do you think of this probability?

Clearly, p = 1
N ×

N−2
N + 1

N ≈
2
N . This is twice that what we should expect. This is a

deviant property.

Q.2 Here, we let p = Pr[z2 = 0] and we assume that Pr[z2 = x] = 1−p
N−1 for all x 6= 0

and N = 256. We consider that a message m is encrypted by XORing to the stream
generated by RC4. I.e., the ciphertext c is such that ci = mi ⊕ zi. We assume that
the same message m is encrypted n many times and that the adversary collected the
ciphertext. Each encryption starts with an independent random permutation. Let nx be
the number of occurrences of the byte x in c2. I.e., there are nx collected ciphertexts c
such that c2 = x in total.

Q.2a Compute the expected value of nx for x = m2 then for any fixed x 6= m2.

Since c2 = m2 is equivalent to z2 = 0, clearly, E(nm2) = np and E(nx) = n 1−p
N−1 for

all x 6= m2.

Q.2b For x 6= m2 fixed, express nm2 − nx as a sum of n independent identically distributed
(iid) random variables Xi which take values in {−1, 0, 1} and compute their expected
value.

We define Xi = 1 if c2 = m2 in the ith ciphertext, Xi = −1 if c2 = x in the ith
ciphertext, and Xi = 0 otherwise. Clearly, nm2 − nx =

∑n
i=1Xi. The Xi’s are iid.

Finally,

E(Xi) =
1

n
E(nm2 − nx) = p− 1− p

N − 1
=

Np− 1

N − 1

Q.2c We recall the Hoeffding bound:

Theorem 1 (Hoeffding). Let X1, . . . , Xn be n iid random variables which take val-
ues in [a, b] and expected value µ. For any t > 0, we have

Pr

[
n∑

i=1

Xi ≤ µ− t

]
≤ e

− 2nt2

(b−a)2

Give an upper bound for Pr[nm2 ≤ nx] for any x 6= m2.
Deduce an upper bound for the event that nm2 is not the largest counter value nx.

We take a = −1, b = 1, µ = t = Np−1
N−1 and we obtain

Pr[nm2 − nx ≤ 0] ≤ e−
n
2
µ2

= e−
n
2 (

Np−1
N−1 )

2

So,

Pr

 ∨
x6=m2

(nm2 ≤ nx)

 ≤ (N − 1)e−
n
2 (

Np−1
N−1 )

2

Q.2d Propose an algorithm to decrypt m2 and a lower bound on its probability of success.
What is the required number of ciphertexts to decrypt well almost certainly?
Propose a numerical application with the values from this exercise.



The algorithm simply collects n ciphertexts and compute argmaxx nx which is m2

except with probability bounded by (N − 1)e−
n
2 (

Np−1
N−1 )

2

. By taking

n = 2(s ln 2 + ln(N − 1))

(
N − 1

Np− 1

)2

the probability is bounded by 2−s. Concretely, with p ≈ 2
N , we obtain n ≈

2N2 ln(N2s). For instance, with n = 221, we have s = 15. So, we decrypt m2 cor-
rectly almost for sure when collecting two millions of ciphertexts encrypting the same
message.



2 Generic Attacks on Multiple Encryption

This exercise is inspired from Efficient Dissection of Composite Problems... by
Dinur, Dunkelman, Keller, and Shamir. Published in the proceedings of Crypto’12
pp. 719–740, LNCS vol. 7417 Springer 2012.

We consider a block cipher E with n-bit blocks and n-bit keys. We denote by D the de-
cryption algorithm. A r-time encryption is a process of encrypting a plaintext P into C =
Ekr(· · ·Ek1(P ) · · ·). We consider the problem of key recovery for a multiple encryption, with
a few known plaintext/ciphertext pairs. I.e., we assume that the adversary knows some pairs
(Pi, Ci), for i = 1, . . . , r, and want to find all (k1, . . . , kr) which would encrypt each Pi to Ci.
In what follows, we consider the worst case complexity.

Q.1 Give an algorithm for r = 1. What are its time complexity and memory complexity?

For each k, we compute Ek(P1). If it matches C1, then we print k and continue.
This is exhaustive search. The time complexity is 2n and the memory complexity is
constant.

Q.2 Give an algorithm for r = 2. What are its time complexity and memory complexity?

For each k1, we compute x = Ek1(P1) and store (x, k1) in a hash table, keyed by
the first value (i.e., stored at the address h(x) in memory). Then, for each k2, we
compute y = Dk2(C1). If there is at address h(y) some record (x, k1) with x = y, then
we compute Ek2(Ek1(P2)) and compare it with C2. If they match, we print (k1, k2)
and continue.
This is meet-in-the-middle. The time complexity is twice 2n and the memory com-
plexity is 2n.

Q.3 We now consider r = 4.

Q.3a Given P1, P2, B1 ∈ {0, 1}n, how many (B2, k1, k2) triplets are such that Ek2(Ek1(Pi)) =
Bi for i = 1, 2?

Propose an algorithm with time-complexity O(2n) and memory complexity O(2n) to
list them all.

We have an equation on 2n bits (Pi mapped to Bi for i = 1, 2) and 3n bits of
unknowns (for B2, k1, k2). So, we shall expect 2n triplets on average.
We do a meet-in-the-middle and split with Ek1 and Ek2. That is, for all k1, we
compute and store in a table Ek1(P1). Then, for all k2, compute Dk2(B1) and see if
there is a match in the table. In the case of a match, we obtain a (k1, k2) pair and
we can compute B2 = Ek2(Ek1(P1)) to be listed. Clearly, we store 2n in the table
and the complexity is 2n.

Q.3b Given P1, P2, B1, C1, C2 and a list of (B2, k1, k2) such that Ek2(Ek1(Pi)) = Bi for
i = 1, 2 from the previous algorithm, propose an algorithm to list all (k1, . . . , k4) such
that Ek4(· · ·Ek1(Pi) · · ·) = Ci for i = 1, 2 and Ek2(Ek1(P1)) = B1.



We do a standard meet-in-the-middle attack with Ek3 and Ek4, based on B1 and C1.
So, we list all (k3, k4) mapping B1 to C1. For each of the 2n pairs found, we can
decrypt C2 and see if it matched any B2 in the list. If it does, we have a (k1, k2, k3, k4)
solution to be printed.

Q.3c Propose an algorithm with time-complexity O(22n) and memory complexity O(2n) to
solve the key recovery problem.

We iterate the previous algorithm for each B1, and for each of the (k1, k2, k3, k4)
found, we check on-the-fly the constraints with P3, P4, C3, C4. The previous attack
runs with complexity 2n and memory complexity 2n. So, the final attack runs with
time complexity 22n and memory complexity 2n.

Q.4 We now consider r = 7.
Q.4a Given P1, P2, B1, B2 ∈ {0, 1}n, how many (k1, k2, k3) triplets are expected to satisfy

the relations Ek3(Ek2(Ek1(Pi))) = Bi for i = 1, 2?
Propose an algorithm with time-complexity O(22n) and memory complexity O(2n) to
list them all.

We have an equation on 2n bits (Pi mapped to Bi for i = 1, 2) and 3n bits of
unknowns (for k1, k2, k3). So, we shall expect 2n triplets on average.
We do a meet-in-the-middle and split with Ek2 ◦ Ek1 and Ek3. That is, for all k1,
we compute and store in a table (Ek1(P1), Ek1(P2)). Then, for all (k2, k3), compute
Dk2(Dk3(Bi)) for i = 1, 2 and see if there is a match in the table. In the case of
a match, we obtain a triplet to be listed. Clearly, we store 2n in the table and the
complexity is 22n.

Q.4b Given P1, . . . , P7, B1, B2 ∈ {0, 1}n, propose an algorithm with time-complexity O(22n)
and memory complexityO(2n) to list all (B3, . . . , B7) such that there exists a (k1, k2, k3)
triplets are such that Ek3(Ek2(Ek1(Pi))) = Bi for i = 1, . . . , 7.

We just change the last algorithm: whenever a new triplet (k1, k2, k3) is found, we
just compute and list (B3, . . . , B7). The complexity is the same.

Q.4c By combining the algorithms of Q.4b and Q.3, propose an algorithm to do the key re-
covery for 7-multiple encryption, with time complexity O(24n) and memory complexity
O(2n).

For all B1 and B2, we run the following loop. First, we run the algorithm of Q.4b
to list all (B3, . . . , B7). The elements of this list are stored in a new hash table of
size 2n. We can even assume storing (k1, k2, k3) at the address of this tuple. Then,
we change a bit the algorithm of Q.3: instead of printing (k4, . . . , k7), we decrypt
C3, . . . , C7 with the newly obtained quadruplet and look for a match in the hash table.
If there is a match, we can print (k1, . . . , k7). (This is the trick to avoid having to
store 22n tuples!) Otherwise, we just continue.
The loop is done 22n and has a complexity of 22n. The storage does not exceed a
complexity of 2n.



3 Another Attack on Broadcast RSA

This exercise is inspired from Solving Systems of Modular Equations in One Vari-
able... by May and Ritzenhofen. Published in the proceedings of PKC’08 pp. 37–46,
LNCS vol. 4939 Springer 2008.

Q.1 Let N1 = 235, N2 = 451, N3 = 391 be three RSA moduli, all working with the public
exponent e = 3. Let y1 = 99, y2 = 238, y3 = 278 be the respective encryption of the same
x under the three RSA keys. Compute x without factoring any moduli.
Hint: (N2N3)

−1 mod N1 = 31, (N1N3)
−1 mod N2 = 72, (N1N2)

−1 mod N3 = 277.

By applying the Chinese Remainder Theorem, we obtain that x3 is equal to
31y1N2N3+72y2N1N3+277y3N1N2 modulo N1N2N3. By doing the computation, we
obtain on a normal pocket calculator 59 300 + ε with 0 ≤ ε < 100. (We are loosing
the least two significant digits due to the imprecision of floating point arithmetic.)
Since x must be lower than the moduli, we deduce that x3 = 59 300+ε. By extracting
the cubic root of 59 300, we obtain about 38.996. So, we deduce (and we can check)
that x = 39.

Q.2 Let (Ni, ei), i = 1, . . . , r be r different RSA public keys, with pairwise coprime moduli.
Let yi = xei mod Ni, for some positive x which is lower than all moduli. Let e = maxi ei
and N = N1 · · ·Nr. We assume that an adversary knows all public keys and all yi but not
x.

Q.2a Show that for each i, there is a monic polynomial Pi(z) of degree e which can be
computed by the adversary and such that Pi(x) ≡ 0 (mod Ni).

Clearly, P (z) = (zei − yi)z
e−ei is such polynomial.

Q.2b Deduce that there is a monic polynomial P (z) of degree e which can be computed by
the adversary and such that P (x) ≡ 0 mod N .

We write P (z) =
∑e

j=0 ajz
j and solve the system P (z) ≡ Pi(z) (mod Ni) for all

i. That is, we apply the Chinese Remainder Theorem to compute aj such that aj
modulo Ni is the coefficient of zj in Pi(z). We obtain the required polynomial. We
observe that ae modulo all Ni is 1, so ae = 1: we have a monic polynomial.

Q.2c Deduce an algorithm to solve x, for r large enough. How large?
We recall the Coppersmith result: Let f(z) be a monic polynomial of degree e in
one variable modulo N . There is an efficient algorithm to find all roots x such that
0 ≤ x ≤ N

1
e .

We now have to solve P (x) ≡ 0 (mod N) with degree e. We observe that P (z) is
a monic polynomial of degree e in one variable modulo N . When r ≥ e, the root we
are looking for is such that 0 ≤ x ≤ N

1
e . So, we can find it efficiently. We just need

r ≥ e.


