Advanced Cryptography — Final Exam Solution

Serge Vaudenay

26.6.2014

- duration: 3h00
- documents are allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will *not* answer any technical question during the exam
- readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Security Interference

We consider a zero-knowledge proof of knowledge π in which a prover P(x, w) holding a witness w for an instance x can convince a verifier V(x) that he knows w such that the relation R(x, w) holds.

We construct a mutual-authentication protocol π' in which two participants A(x, w) and B(x, w) share the secret w for the instance x. The protocol π' runs as follows:

- 1: A and B execute π : A runs P(x, w) and B runs V(x)
- 2: if V(x) accepted for B, B sends w to A
- 3: A accepts if and only if w is correct
- **Q.1** Show that there is an algorithm \mathcal{E}^{C^*} calling C^* as a subroutine such that, for every input z and every malicious algorithm $C^*(x, z)$, if $C^*(x, z)$ interacts with B(x, w) and B(x, w) accepts, then $\mathcal{E}^{C^*}(x, z) = w'$ such that R(x, w') holds.

If B(x, w) accepts, it must be during the execution of π . So, $C^*(x, z)$ can make V(x) execute π and accept. We know that π is a sound proof of knowledge. So, we can use the extractor \mathcal{E}^{C^*} and extract a valid witness w'.

Q.2 Show that there is an algorithm \mathcal{S}^{C^*} calling C^* as a subroutine such that, for every input z and every malicious algorithm $C^*(x, z)$, if $C^*(x, z)$ interacts with A(x, w) and A(x, w) accepts, then $\mathcal{S}^{C^*}(x, z) = w'$ such that R(x, w') holds. WARNING: \mathcal{S} does not know w, a priori.

We can consider C^* as a malicious verifier who produces a final output w'. If A(x, w) accept, it must be that w' is a valid witness for x (which is actually w). We know that π is zero-knowledge. So, we can use the simulator S^{C^*} and extract some w' which is indistinguishable. The distinguisher checking R(x, w') must have a negligible advantage. So, w' must be a valid witness for x.

Q.3 Show that π and π' do not compose: even though a malicious verifier learns nothing from P(x, w) and a malicious Alice learns nothing from B(x, w), in a network where P(x, w) and B(x, w) are two honest participants, show that a malicious participant can extract w.

The malicious participant relays messages between P(x, w) and B(x, w). Clearly, B(x, w) accepts and sends w as his last message and the attack stops. The adversary has learnt w.

2 Distance Bounding

We consider a distance-bounding protocol, in which there is a prover P and a verifier V sharing a secret x. The protocol starts with an initialization phase which consists of setting up a matrix $a \in \{0, 1\}^{n \times 2}$ to be shared between P and V. (We will see later how this initialization phase works.) Then, we have n rounds of time-critical challenge-response exchanges: in the *i*th round, V sends a random $c_i \in \{1, 2\}$ to which P answers by $r_i = a_{i,c_i}$. V accepts the response if it is correct and if the elapsed time between sending c_i and receiving r_i is at most $\frac{2B}{C}$, where B is a distance bound and C is the speed of light. We say that the protocol succeeds if V accepts the response in all rounds. We assume that the time used to compute is negligible against the time of flight of messages. So, a honest prover within a distance up to B can pass all rounds. We want the protocol to resist to two types of threats:

- In a concurrent setting with several honest provers using key x and several honest verifiers using key x, including a target verifier \mathcal{V} , if there is no prover within a distance up to Bto \mathcal{V} , no malicious participant \mathcal{A} can make a protocol with \mathcal{V} succeed. If this holds, we say the protocol is *secure*.
- A malicious prover within a distance larger than B to the verifier cannot make the protocol succeeds. In what follows we call this threat a *distance fraud*.

We stress that the above malicious participant starts by ignoring x while the malicious prover in distance fraud knows x.

Q.1 (General security upper bound.)

We assume that the initialization phase is such that a computed by a honest verifier is a uniformly distributed matrix no matter any malicious environment.

Q.1a We consider a honest verifier \mathcal{V} and a malicious participant \mathcal{A} with no other participant. Show that \mathcal{A} can make the protocol succeed with probability 2^{-n} .

A can just send a random response. It passes with probability $\frac{1}{2}$. So, the protocol succeeds with probability 2^{-n} .

Q.1b We consider a man-in-the-middle \mathcal{A} between a honest prover P and a honest verifier \mathcal{V} who are within a distance larger than B.

Show that \mathcal{A} can make the protocol succeed with probability $\left(\frac{3}{4}\right)^n$.

HINT: assume that \mathcal{A} can make a challenge-response exchange with P before he receives the first challenge from \mathcal{V} .

After the initialization phase where \mathcal{A} passively relays messages between P and V, we make \mathcal{A} send random challenges to P and get his responses r_i . When a challenge c_i is received from V, \mathcal{A} sends r_i .

Clearly, if \mathcal{A} has picked c_i as the *i*th challenge sent to P (this happens with probability $\frac{1}{2}$), the round passes. Otherwise (with another probability $\frac{1}{2}$), the response r_i is accepted with probability $\frac{1}{2}$. So, the round passes with probability $\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4}$. Hence, the protocol succeeds with probability $\left(\frac{3}{4}\right)^n$.

Q.2 (General distance fraud.)

We make the same assumption on a.

Q.2a Show that a far-away malicious prover who sends random r_i 's can make a distance fraud with probability 2^{-n} .

HINT: assume that the malicious prover can predict when c_i will be sent by the verifier.

If the prover predicts that c_i will be sent at time t, he sends a random r_i between time $t - \frac{d}{C}$ and time $t + \frac{2B-d}{C}$ (where d is the distance between \mathcal{A} and \mathcal{V}) so that it reaches the verifier after time t and before time $t + \frac{2B}{C}$. The response is correct with probability $\frac{1}{2}$. So, the protocol succeeds with probability 2^{-n} .

Q.2b Find another strategy so that the distance fraud works with probability $\left(\frac{3}{4}\right)^n$.

He sends a random r_i selected in $\{a_{i,1}, a_{i,2}\}$. It is always correct if $a_{i,1} = a_{i,2}$. Otherwise, it passes with probability $\frac{1}{2}$. Since $a_{i,1} = a_{i,2}$ with probability $\frac{1}{2}$, the probability to pass a round is $1 \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4}$. So, the protocol succeeds with probability $\left(\frac{3}{4}\right)^n$.

Q.3 (Distance fraud for a dedicated protocol.)

We consider a protocol with the following initialization phase: The verifier selects a nonce $N_V \in \{0,1\}^n$ and sends it to the prover. The prover selects a nonce $N_P \in \{0,1\}^n$ and sends it to the verifier. Both compute $a_{.,1} = \mathsf{PRF}_x(N_V)$ by using a pseudorandom function PRF and $a_{.,2} = a_{.,1} \oplus N_P$.

Make a distance fraud which succeeds with probability 1.

A malicious prover could take $N_P = 0$ so that $a_{,2} = a_{,1}$. This way, the correct response in round i would always be equal to $a_{i,1}$ no matter the challenger. So, a malicious prover could send the correct response before receiving the challenge so that it will reach the verifier on time.

- **Q.4** (Security of a dedicated protocol.)
 - We now modify the initialization phase by having $a_{.,1} = \mathsf{PRF}_x(N_P, N_V)$ and $a_{.,2} = a_{.,1} \oplus x$. Q.4a Show that a malicious man-in-the-middle between P and V (who are within a distance up to B) can extract x_i .

HINT: assume that the adversary can see if the protocol succeeded on the side of V.

We consider a man-in-the-middle who passively relay messages except the challenge c_i which is flipped: if the challenge c_i is received from V, the challenge $3 - c_i$ is sent to P. The response r_i is relayed.

We note that $r_i = a_{i,3-c_i}$ while the verifier expect a_{i,c_i} . The difference between the two is x_i . Since all other challenge must be accepted, the protocol succeeds if and only if $x_i = 0$. So, by seeing whether the protocol succeeds, the man-in-the-middle can deduce x_i .

Q.4b In a setting with n provers and n + 1 verifiers, show that the protocol is insecure: we can have an attack succeeding with probability 1. HINT: use the previous question!

We use n times the previous attack for i = 1, ..., n, at different locations with one prover, one verifier, and one man-in-the-middle in each of these locations. Then, all men-in-the-middle send their x_i to a malicious participant \mathcal{A} sitting close by a verifier \mathcal{V} . Clearly, he can impersonate a honest prover by simulating P(x), and make a protocol succeed for \mathcal{V} even though there is no prover within a distance up to B.

3 On a Weak Fiat-Shamir Transform

This exercise is inspired from Bernhard-Pereira-Warinschi, How Not to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios, Asiacrypt 2012, LNCS vol. 7658, Springer.

Throughout this exercise, we consider some (G, q, g) depending on a security parameter t, where G is a group, q is a prime number, and g is an element of G of order q. We assume that $q > 2^t$, that the size of q is polynomially bounded, and that we can make basic operations (multiplication, inversion, comparison) in G in polynomial time.

We consider the Schnorr Σ -protocol for the relation R defined by

$$R(y, x) \iff g^x = y$$

In the Σ -protocol, the prover picks $k \in \mathbb{Z}_q$ and sends $r = g^k$. The verifier picks $e \in \{1, \ldots, 2^t\}$ and sends it to the prover. The prover answers by $s = ex + k \mod q$. The verifier checks that $ry^e = g^s$. In the *weak* Fiat-Shamir transform constructs a non-interactive proof system by using a random oracle H as follows:

Proof(y, x; k): compute $r = g^k$, e = H(r), $s = ex + k \mod q$. The output is (r, s). Verify(y, (r, s)): check that $ry^{H(r)} = g^s$. If this passes, the output is accept. Otherwise, the output is reject.

We assume that the random oracle H returns elements of \mathbf{Z}_q which are uniformly distributed. A proof (r, s) for y is aimed at producing evidence that the algorithm which forged (r, s) knows x such that $g^x = y$.

Q.1 Construct an efficient algorithm \mathcal{A}^H invoking H and producing a triplet (y, r, s) such that $y \neq 1, y$ is spanned by g, and $\mathsf{Verify}(y, (r, s)) = \mathsf{accept}$, with probability larger than $1 - 2^{-t}$.

We consider an algorithm picking r and s at random then calling H(r), then computing $y = (r^{-1}g^s)^{\frac{1}{H(r)} \mod q}$. Except for H(r) = 0, which occurs with probability lower than 2^{-t} , (r, s) is a valid proof for y.

Q.2 In the (strong) Fiat-Shamir construction, the query to H is y || r instead of r alone. In this case, say why the previous attack does not work.

In the previous attack, y is not determined when we call H(r). Now, to query H we must commit to some y. So, the previous attack does not work in the strong Fiat-Shamir construction.

Q.3 We let $y \neq 1$ spanned by g be *fixed*.

Let \mathcal{A}^H be an algorithm invoking H. We consider the following experiment:

1: pick ρ and H2: set $(r,s) = \mathcal{A}^H(\rho)$

3: set Out = Verify(y, (r, s))

The goal of this question is to show that there is a generic transform \mathcal{T} such that for any polynomially bounded algorithm \mathcal{A}^H such that $\Pr[\mathsf{Out} = \mathsf{accept}] \ge 1 - 2^{-t}$ (over the distribution of ρ and H) $\mathcal{B} = \mathcal{T}(\mathcal{A})$ is a polynomially bounded algorithm producing the discrete logarithm of y.

Q.3a Let *E* be the event that during the computation of \mathcal{A} , a query to *H* was made with the final value *r* of the proof. Show that $\Pr[E] \ge 1 - 2 \times 2^{-t}$.

HINT: first show that $\Pr[\mathsf{Out} = \mathsf{accept}|\neg E] \le 2^{-t}$.

We have $\mathsf{Out} = \mathsf{accept} \iff y^{H(r)} = r^{-1}g^s$. If E does not hold, H(r) is completely independent from (r, s). Since y is generated by g and is not 1, it has order q. So, $\Pr[\mathsf{Out} = \mathsf{accept}|\neg E] = \frac{1}{q} \leq 2^{-t}$. Then,

$$\Pr[E] \ge \Pr[\mathsf{Out} = \mathsf{accept}] - \Pr[\mathsf{Out} = \mathsf{accept}|\neg E] \ge 1 - 2 \times 2^{-t}$$

Q.3b We consider a simulator for \mathcal{A} and H. The simulation of H is done following the lazy sampling technique (i.e., fresh random coins are flipped only when needed). The simulation defines a tree of the partial views of the simulator, where each node corresponds to the view when a fresh call to H is made, and the q sons of the node correspond to the possible coin flips to respond to the query. A leaf λ corresponds to the end of the execution of \mathcal{A} . The event $\mathsf{Succ}(\lambda)$ holds if \mathcal{A} outputs some (r, s) making the verification accept and r was queried to H. If $\mathsf{Succ}(\lambda)$ holds, we let $\mathsf{dist}(\lambda)$ be the ancestor of λ corresponding to the H(r) oracle call. Otherwise, we let $\mathsf{dist}(\lambda) = \lambda$.

We let p be the probability that a random descent in the tree ends to a leaf λ such that $\operatorname{Succ}(\lambda)$ holds. We let d be the expected length of a random descent. Given a node ν in the tree, we let Y be a random leaf obtained by a random descent starting from ν . We let $f(\nu) = \Pr[\operatorname{Succ}(Y), \operatorname{dist}(Y) = \nu]$. We let X be a random leaf obtained by a random descent from the root. We let Y be a random leaf obtained by a random descent from dist(X). The Forking Lemma says that $E(f(\operatorname{dist}(X))) \geq \frac{p^2}{2d}$.

Show that if d is polynomially bounded, we can make a polynomial-time algorithm walking in this tree and producing with probability at least $\frac{p^2}{2d} - (1-p) - 2^{-t}$ two leaves X and Y such that Succ(X) and Succ(Y) hold, dist(X) = dist(Y), and with X and Y in different subtrees connected to dist(X) = dist(Y).

We let X be a leaf obtained from a random descent from the root. We let Y be a leaf obtained from a random descent from dist(X). Since \mathcal{A} is polynomially bounded, d is also polynomially bounded, and so is this algorithm.

Let $A = \mathsf{Succ}(X)$, B be the event that $\mathsf{Succ}(Y)$ holds with $\mathsf{dist}(X) = \mathsf{dist}(Y)$, and C be the event that X and Y are in two different subtrees starting from dist(X). We have $\Pr[A] = p$.

Conditioned to X fixed, we clearly have $\Pr[B|X] = f(\operatorname{dist}(X))$. So,

$$\Pr[B] = E(f(\mathsf{dist}(X))) \ge \frac{p^2}{2d}$$

Thus,

$$\Pr[A, B] = \Pr[B] - \Pr[\neg A, B] \ge \Pr[B] - \Pr[\neg A] \ge \frac{p^2}{2d} + 1 - p$$

Furthermore, $\Pr[\neg C|A] = \frac{1}{a} \leq 2^{-t}$. So,

$$\Pr[A, B, C] \ge \Pr[A, B] - \Pr[\neg C|A] \ge \frac{p^2}{2d} + 1 - p - 2^{-t}$$

Q.3c Show that by using \mathcal{A}^H as a subroutine we can make a polynomial-time algorithm \mathcal{B} which outputs x such that $q^x = y$ with a probability which is not negligible.

We let \mathcal{B} use the simulator in the previous question and produce X and Y in polynomial time, with a probability which is not negligible. Let (r,s) be the output of \mathcal{A} in the first descent X and (r', s') be the output of A in the second one Y. Since both have the same distinguished ancestor, we have that r = r'. By construction, both output are accepted, so $ry^{H(r)} = g^s$ and $ry^{H'(r)} = g^{s'}$.

We let H be the oracle function in the first descent and H' be the oracle function in the second one. By construction, $H(r) \neq H'(r)$. Therefore, $x = \frac{s-s'}{H(r)-H'(r)} \mod q$ is such that $g^x = y$. This is the final output of \mathcal{B} .

Q.4 The previous reduction works for attacks \mathcal{A} in which y is determined at the beginning. Assuming that now y is not determined and we consider an attack producing valid (y, r, s)triplets. Assume that for each such attack \mathcal{A} , there exists an algorithm \mathcal{B} such that for each View, if $\mathcal{A}(\text{View}) = (y, r, s)$ such that Verify(y, (r, s)) accepts, $\mathcal{B}(\text{View}) = x$ such that $y = q^x$.

Show that we can solve the discrete logarithm problem: we can construct a polynomialtime algorithm \mathcal{C} such that given z as input, it outputs $\mathcal{C}(z)$ such that $q^{\mathcal{C}(z)} = z$. HINT: Construct some \mathcal{A} like in Q.1 but with r = z.

Let z be a value for which we want to compute the discrete logarithm. We construct an algorithm \mathcal{A} taking r = z, picking s, calling H(r), and $y = (r^{-1}q^s)^{\frac{1}{H(r)}}$ to output (y, r, s). The view of \mathcal{A} is (z, H(z); s). By hypothesis, there is an algorithm \mathcal{B} such that $\mathcal{B}(z, H(z); s) = x$ such that $y = q^x$. Since $zy^{H(z)} = g^s$, we deduce $z = g^{s-xH(z)}$. So, we can compute s - xH(z) which is

the discrete logarithm of z.