
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

26.6.2014

– duration: 3h00
– documents are allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Security Interference

We consider a zero-knowledge proof of knowledge π in which a prover P (x,w) holding a
witness w for an instance x can convince a verifier V (x) that he knows w such that the
relation R(x,w) holds.

We construct a mutual-authentication protocol π′ in which two participants A(x,w) and
B(x,w) share the secret w for the instance x. The protocol π′ runs as follows:

1: A and B execute π: A runs P (x,w) and B runs V (x)
2: if V (x) accepted for B, B sends w to A
3: A accepts if and only if w is correct

Q.1 Show that there is an algorithm EC∗
calling C∗ as a subroutine such that, for every input

z and every malicious algorithm C∗(x, z), if C∗(x, z) interacts with B(x,w) and B(x,w)
accepts, then EC∗

(x, z) = w′ such that R(x,w′) holds.

If B(x,w) accepts, it must be during the execution of π. So, C∗(x, z) can make V (x)
execute π and accept. We know that π is a sound proof of knowledge. So, we can use
the extractor EC∗

and extract a valid witness w′.

Q.2 Show that there is an algorithm SC∗
calling C∗ as a subroutine such that, for every input

z and every malicious algorithm C∗(x, z), if C∗(x, z) interacts with A(x,w) and A(x,w)
accepts, then SC∗

(x, z) = w′ such that R(x,w′) holds.
WARNING: S does not know w, a priori.

We can consider C∗ as a malicious verifier who produces a final output w′. If A(x,w)
accept, it must be that w′ is a valid witness for x (which is actually w). We know
that π is zero-knowledge. So, we can use the simulator SC∗

and extract some w′

which is indistinguishable. The distinguisher checking R(x,w′) must have a negligible
advantage. So, w′ must be a valid witness for x.



Q.3 Show that π and π′ do not compose: even though a malicious verifier learns nothing from
P (x,w) and a malicious Alice learns nothing from B(x,w), in a network where P (x,w)
and B(x,w) are two honest participants, show that a malicious participant can extract w.

The malicious participant relays messages between P (x,w) and B(x,w). Clearly,
B(x,w) accepts and sends w as his last message and the attack stops. The adversary
has learnt w.



2 Distance Bounding

We consider a distance-bounding protocol, in which there is a prover P and a verifier V sharing
a secret x. The protocol starts with an initialization phase which consists of setting up a
matrix a ∈ {0, 1}n×2 to be shared between P and V . (We will see later how this initialization
phase works.) Then, we have n rounds of time-critical challenge-response exchanges: in the
ith round, V sends a random ci ∈ {1, 2} to which P answers by ri = ai,ci . V accepts the
response if it is correct and if the elapsed time between sending ci and receiving ri is at most
2B
C , where B is a distance bound and C is the speed of light. We say that the protocol succeeds
if V accepts the response in all rounds. We assume that the time used to compute is negligible
against the time of flight of messages. So, a honest prover within a distance up to B can pass
all rounds. We want the protocol to resist to two types of threats:

– In a concurrent setting with several honest provers using key x and several honest verifiers
using key x, including a target verifier V, if there is no prover within a distance up to B
to V, no malicious participant A can make a protocol with V succeed. If this holds, we
say the protocol is secure.

– A malicious prover within a distance larger than B to the verifier cannot make the protocol
succeeds. In what follows we call this threat a distance fraud.

We stress that the above malicious participant starts by ignoring x while the malicious prover
in distance fraud knows x.

Q.1 (General security upper bound.)

We assume that the initialization phase is such that a computed by a honest verifier is a
uniformly distributed matrix no matter any malicious environment.

Q.1a We consider a honest verifier V and a malicious participantA with no other participant.

Show that A can make the protocol succeed with probability 2−n.

A can just send a random response. It passes with probability 1
2 . So, the protocol

succeeds with probability 2−n.

Q.1b We consider a man-in-the-middle A between a honest prover P and a honest verifier
V who are within a distance larger than B.

Show that A can make the protocol succeed with probability
(
3
4

)n
.

HINT: assume that A can make a challenge-response exchange with P before he re-
ceives the first challenge from V.

After the initialization phase where A passively relays messages between P and V ,
we make A send random challenges to P and get his responses ri. When a challenge
ci is received from V , A sends ri.
Clearly, if A has picked ci as the ith challenge sent to P (this happens with probabil-
ity 1

2), the round passes. Otherwise (with another probability 1
2), the response ri is

accepted with probability 1
2 . So, the round passes with probability 1

2 × 1 + 1
2 ×

1
2 = 3

4 .

Hence, the protocol succeeds with probability
(
3
4

)n
.

Q.2 (General distance fraud.)

We make the same assumption on a.



Q.2a Show that a far-away malicious prover who sends random ri’s can make a distance
fraud with probability 2−n.
HINT: assume that the malicious prover can predict when ci will be sent by the verifier.

If the prover predicts that ci will be sent at time t, he sends a random ri between
time t− d

C and time t+ 2B−d
C (where d is the distance between A and V) so that it

reaches the verifier after time t and before time t+ 2B
C . The response is correct with

probability 1
2 . So, the protocol succeeds with probability 2−n.

Q.2b Find another strategy so that the distance fraud works with probability
(
3
4

)n
.

He sends a random ri selected in {ai,1, ai,2}. It is always correct if ai,1 = ai,2. Other-
wise, it passes with probability 1

2 . Since ai,1 = ai,2 with probability 1
2 , the probability

to pass a round is 1× 1
2 +

1
2 ×

1
2 = 3

4 . So, the protocol succeeds with probability
(
3
4

)n
.

Q.3 (Distance fraud for a dedicated protocol.)
We consider a protocol with the following initialization phase: The verifier selects a nonce
NV ∈ {0, 1}n and sends it to the prover. The prover selects a nonce NP ∈ {0, 1}n and
sends it to the verifier. Both compute a.,1 = PRFx(NV ) by using a pseudorandom function
PRF and a.,2 = a.,1 ⊕NP .
Make a distance fraud which succeeds with probability 1.

A malicious prover could take NP = 0 so that a.,2 = a.,1. This way, the correct
response in round i would always be equal to ai,1 no matter the challenger. So, a
malicious prover could send the correct response before receiving the challenge so
that it will reach the verifier on time.

Q.4 (Security of a dedicated protocol.)
We now modify the initialization phase by having a.,1 = PRFx(NP , NV ) and a.,2 = a.,1⊕x.

Q.4a Show that a malicious man-in-the-middle between P and V (who are within a distance
up to B) can extract xi.
HINT: assume that the adversary can see if the protocol succeeded on the side of V .

We consider a man-in-the-middle who passively relay messages except the challenge
ci which is flipped: if the challenge ci is received from V , the challenge 3− ci is sent
to P . The response ri is relayed.
We note that ri = ai,3−ci while the verifier expect ai,ci. The difference between the
two is xi. Since all other challenge must be accepted, the protocol succeeds if and
only if xi = 0. So, by seeing whether the protocol succeeds, the man-in-the-middle
can deduce xi.

Q.4b In a setting with n provers and n+ 1 verifiers, show that the protocol is insecure: we
can have an attack succeeding with probability 1.
HINT: use the previous question!

We use n times the previous attack for i = 1, . . . , n, at different locations with one
prover, one verifier, and one man-in-the-middle in each of these locations. Then,
all men-in-the-middle send their xi to a malicious participant A sitting close by a
verifier V. Clearly, he can impersonate a honest prover by simulating P (x), and
make a protocol succeed for V even though there is no prover within a distance up
to B.



3 On a Weak Fiat-Shamir Transform

This exercise is inspired from Bernhard-Pereira-Warinschi, How Not to Prove Your-
self: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios, Asiacrypt 2012,
LNCS vol. 7658, Springer.

Throughout this exercise, we consider some (G, q, g) depending on a security parameter t,
where G is a group, q is a prime number, and g is an element of G of order q. We assume that
q > 2t, that the size of q is polynomially bounded, and that we can make basic operations
(multiplication, inversion, comparison) in G in polynomial time.

We consider the Schnorr Σ-protocol for the relation R defined by

R(y, x) ⇐⇒ gx = y

In the Σ-protocol, the prover picks k ∈ Zq and sends r = gk. The verifier picks e ∈ {1, . . . , 2t}
and sends it to the prover. The prover answers by s = ex+ k mod q. The verifier checks that
rye = gs. In the weak Fiat-Shamir transform constructs a non-interactive proof system by
using a random oracle H as follows:

Proof(y, x; k): compute r = gk, e = H(r), s = ex+ k mod q. The output is (r, s).

Verify(y, (r, s)): check that ryH(r) = gs. If this passes, the output is accept. Otherwise, the
output is reject.

We assume that the random oracle H returns elements of Zq which are uniformly distributed.
A proof (r, s) for y is aimed at producing evidence that the algorithm which forged (r, s)
knows x such that gx = y.

Q.1 Construct an efficient algorithm AH invoking H and producing a triplet (y, r, s) such that
y 6= 1, y is spanned by g, and Verify(y, (r, s)) = accept, with probability larger than 1−2−t.

We consider an algorithm picking r and s at random then calling H(r), then com-

puting y = (r−1gs)
1

H(r)
mod q

. Except for H(r) = 0, which occurs with probability
lower than 2−t, (r, s) is a valid proof for y.

Q.2 In the (strong) Fiat-Shamir construction, the query to H is y‖r instead of r alone. In this
case, say why the previous attack does not work.

In the previous attack, y is not determined when we call H(r). Now, to query H
we must commit to some y. So, the previous attack does not work in the strong
Fiat-Shamir construction.

Q.3 We let y 6= 1 spanned by g be fixed.

LetAH be an algorithm invokingH. We consider the following experiment:

1: pick ρ and H
2: set (r, s) = AH(ρ)
3: set Out = Verify(y, (r, s))



The goal of this question is to show that there is a generic transform T such that for
any polynomially bounded algorithm AH such that Pr[Out = accept] ≥ 1− 2−t (over the
distribution of ρ and H) B = T (A) is a polynomially bounded algorithm producing the
discrete logarithm of y.

Q.3a Let E be the event that during the computation of A, a query to H was made with
the final value r of the proof. Show that Pr[E] ≥ 1− 2× 2−t.

HINT: first show that Pr[Out = accept|¬E] ≤ 2−t.

We have Out = accept ⇐⇒ yH(r) = r−1gs. If E does not hold, H(r) is completely
independent from (r, s). Since y is generated by g and is not 1, it has order q. So,
Pr[Out = accept|¬E] = 1

q ≤ 2−t.
Then,

Pr[E] ≥ Pr[Out = accept]− Pr[Out = accept|¬E] ≥ 1− 2× 2−t

Q.3b We consider a simulator for A and H. The simulation of H is done following the lazy
sampling technique (i.e., fresh random coins are flipped only when needed). The simu-
lation defines a tree of the partial views of the simulator, where each node corresponds
to the view when a fresh call to H is made, and the q sons of the node correspond
to the possible coin flips to respond to the query. A leaf λ corresponds to the end
of the execution of A. The event Succ(λ) holds if A outputs some (r, s) making the
verification accept and r was queried to H. If Succ(λ) holds, we let dist(λ) be the
ancestor of λ corresponding to the H(r) oracle call. Otherwise, we let dist(λ) = λ.

We let p be the probability that a random descent in the tree ends to a leaf λ such
that Succ(λ) holds. We let d be the expected length of a random descent. Given a
node ν in the tree, we let Y be a random leaf obtained by a random descent starting
from ν. We let f(ν) = Pr[Succ(Y ), dist(Y ) = ν]. We let X be a random leaf obtained
by a random descent from the root. We let Y be a random leaf obtained by a random

descent from dist(X). The Forking Lemma says that E(f(dist(X))) ≥ p2

2d .

Show that if d is polynomially bounded, we can make a polynomial-time algorithm

walking in this tree and producing with probability at least p2

2d − (1 − p) − 2−t two
leaves X and Y such that Succ(X) and Succ(Y ) hold, dist(X) = dist(Y ), and with X
and Y in different subtrees connected to dist(X) = dist(Y ).



We let X be a leaf obtained from a random descent from the root. We let Y be a leaf
obtained from a random descent from dist(X). Since A is polynomially bounded, d
is also polynomially bounded, and so is this algorithm.
Let A = Succ(X), B be the event that Succ(Y ) holds with dist(X) = dist(Y ), and C
be the event that X and Y are in two different subtrees starting from dist(X).
We have Pr[A] = p.
Conditioned to X fixed, we clearly have Pr[B|X] = f(dist(X)). So,

Pr[B] = E(f(dist(X))) ≥ p2

2d

Thus,

Pr[A,B] = Pr[B]− Pr[¬A,B] ≥ Pr[B]− Pr[¬A] ≥ p2

2d
+ 1− p

Furthermore, Pr[¬C|A] = 1
q ≤ 2−t. So,

Pr[A,B,C] ≥ Pr[A,B]− Pr[¬C|A] ≥ p2

2d
+ 1− p− 2−t

Q.3c Show that by using AH as a subroutine we can make a polynomial-time algorithm B
which outputs x such that gx = y with a probability which is not negligible.

We let B use the simulator in the previous question and produce X and Y in poly-
nomial time, with a probability which is not negligible. Let (r, s) be the output of A
in the first descent X and (r′, s′) be the output of A in the second one Y . Since both
have the same distinguished ancestor, we have that r = r′.
By construction, both output are accepted, so ryH(r) = gs and ryH

′(r) = gs
′
.

We let H be the oracle function in the first descent and H ′ be the oracle function in
the second one. By construction, H(r) 6= H ′(r).
Therefore, x = s−s′

H(r)−H′(r) mod q is such that gx = y. This is the final output of B.

Q.4 The previous reduction works for attacks A in which y is determined at the beginning.
Assuming that now y is not determined and we consider an attack producing valid (y, r, s)
triplets. Assume that for each such attack A, there exists an algorithm B such that for
each View, if A(View) = (y, r, s) such that Verify(y, (r, s)) accepts, B(View) = x such that
y = gx.
Show that we can solve the discrete logarithm problem: we can construct a polynomial-
time algorithm C such that given z as input, it outputs C(z) such that gC(z) = z.
HINT: Construct some A like in Q.1 but with r = z.

Let z be a value for which we want to compute the discrete logarithm. We construct

an algorithm A taking r = z, picking s, calling H(r), and y = (r−1gs)
1

H(r) to output
(y, r, s). The view of A is (z,H(z); s).
By hypothesis, there is an algorithm B such that B(z,H(z); s) = x such that y = gx.
Since zyH(z) = gs, we deduce z = gs−xH(z). So, we can compute s− xH(z) which is
the discrete logarithm of z.


