Advanced Cryptography — Final Exam

Serge Vaudenay

26.6.2015

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

WARNING: for each question, specially the ones of type "show that...", it is expected that the response contains understandable sentences.

1 Davies-Meyer Construction

Given a security parameter λ , we construct two sets G^{λ} and M^{λ} and a function C^{λ} mapping an element $h \in G^{\lambda}$ and an element $k \in M^{\lambda}$ to an element $C_k^{\lambda}(h) \in G^{\lambda}$. (From now on, and for more readability, we do not write the λ superscript any longer.) We assume that G is given an additive group structure, with neutral element $0 \in G$. As an instance, we assume that $G = \{0, 1\}^{\lambda}$. We assume a block cipher C on the block space G and the key space M: given $k \in M$ and $h \in G$, it encrypts h into $C_k(h)$. We define a keyed function F by

$$F_m(h) = C_m(h) + h$$

We define the following games, played by a polynomially bounded algorithm $\mathcal{A}^{\mathcal{O}}$ interacting with an oracle \mathcal{O} :

Game Γ_2 : 1: pick C^* a random permutation of H with uniform distribution 2: run $c = \mathcal{A}^{\mathcal{O}_{C^*}}$ 3: return c

We let p_i be the probability that Γ_i returns 0. We say that C is a *pseudorandom function* (PRF) if for any polynomially bounded \mathcal{A} we have that $p_1 - p_0$ is negligible. We say that C is a *pseudorandom permutation* (PRP) if for any polynomially bounded \mathcal{A} we have that $p_2 - p_0$ is negligible.

We define two more oracles.

oracle query $\mathcal{O}_1(h)$: 1: if h is not new, answer as previously (by keeping a table of previous queries) 2: else pick a random $h^* \in G$ and return h^* 2: else pick a random $h^* \in G$ and return h^* 2: else pick a random $h^* \in G$ which is different from all previously drawn values and return h^*

We let Γ'_i be the game

1: run $c = \mathcal{A}^{\mathcal{O}_i}$

2: return c

and let p'_i be the probability that it returns 0.

- **Q.1** Show that for any \mathcal{A} , we have $p_1 = p'_1$ and $p'_2 = p_2$.
- **Q.2** Let *B* be the event that the oracle \mathcal{O}_1 picks some h^* which was previously drawn. Show that $\Pr[B]$ is negligible.
- **Q.3** Show that $p'_2 p'_1$ is negligible. HINT: show that $\Pr[\Gamma'_2 = 0] = \Pr[\Gamma'_1 = 0 | \neg B]$.
- **Q.4** Deduce that if C is a PRP, then C is a PRF as well.
- **Q.5** If C is a PRF, show that F is a PRF.
- Q.6 (Bonus question)

Do you see any reason why we do not use $(h, k) \mapsto C_k(h)$ as a compression function to construct a hash function

$$H(k_1,\ldots,k_n) = C_{\bar{n}}(C_{k_n}(\cdots C_{k_1}(0)\cdots))$$

where \bar{n} is an element of M encoding the length n of k_1, \ldots, k_n), although it is a PRF? HINT: what would Ralph Merkle or Ivan Damgård say?

2 Fiat-Shamir Revisited (Again)

Throughout this exercise, we consider some prime number q and some element g generating a multiplicative group G of order q. We assume that basic operations (multiplication, inversion, comparison) are easy but that the discrete logarithm problem is hard.

We consider the Schnorr Σ -protocol for the relation R defined by

$$R(y, x) \iff g^x = y$$

for $y \in G$ and $x \in \mathbb{Z}_q$. In the Σ -protocol, the prover picks $k \in \mathbb{Z}_q$ and sends $r = g^k$. The verifier picks $e \in \mathbb{Z}_q$ and sends it to the prover. The prover answers by $s = ex + k \mod q$. The verifier checks that $ry^e = g^s$. The *regular* Fiat-Shamir transform constructs a non-interactive proof of knowledge from a Σ protocol by using a random oracle H. We consider here the *weak* Fiat-Shamir which is defined as follows:

Proof(y, x; k): compute $r = g^k$, e = H(r), $s = ex + k \mod q$. The output is (r, s). Verify(y, r, s): check that $ry^{H(r)} = g^s$. If this passes, the output is accept. Otherwise, the output is reject.

Here, we assume that the random oracle H returns elements of \mathbf{Z}_q .

- **Q.1** What is the difference between Proof/Verify and the Schnorr signature scheme? Show that it is equivalent.
 - What is the difference between the weak Fiat-Shamir transform and the regular Fiat-Shamir transform?
 - Apply the regular Fiat-Shamir transform to the Schnorr proof.
- Q.2 We study the properties of the weak Fiat-Shamir transform on the Schnorr protocol.
- **Q.2a** Show that the above Schnorr protocol satisfies the special soundness property. Deduce that it is a proof of knowledge of the discrete logarithm of y.
- **Q.2b** In the weak Fiat-Shamir transform, y is not taken into account to compute e. Consequently, it is as if y could be established after e is received. Show that we can forge a triplet (y, r, s) passing Verify(y, r, s) and for which we cannot compute the discrete logarithm of y, except in negligible cases. HINT: first select r and s at random.
- **Q.2c** Let H' be a random oracle producing elements of G. Prove that an algorithm \mathcal{A} interacting with H' and producing a pair (s, k) such that $H'(s) = g^k$ can be transformed into an algorithm \mathcal{B} which solves the discrete logarithm problem. HINT: simulate H' by $H'(s) = yg^{H(s)}$.
- **Q.2d** Inspired by the Fiat-Shamir paradigm, further show that in the forgery of (y, r, s) from Q.2b, we can prove that we ignore the discrete logarithm of y. HINT: take r = H'(s).

Q.3 We study here consequences on some deniable authentication scheme. We define the relation $R'(y_A, y_B, x) \Leftrightarrow g^x \in \{y_A, y_B\}$ where x is the witness for the instance (y_A, y_B) . We consider the following protocol ρ :

Prover

$$x_A$$
 s.t. $y_A = g^{x_A}$ y_A, y_B
pick $k_A, s_B, e_B \in \mathbb{Z}_q$
 $r_A = g^{k_A}, r_B = g^{s_B} y_B^{-e_B} \xrightarrow{r_A, r_B}$
 $e_A = c - e_B \mod q \xleftarrow{c} \operatorname{pick} c \in \mathbb{Z}_q$
 $s_A = e_A x_A + k_A \mod q \xrightarrow{e_A, e_B, s_A, s_B}$ check $e_A + e_B \mod q = c$
 $r_A y_A^{e_A} = g^{s_A}, r_B y_B^{e_B} = g^{s_B}$

Q.3a We specified ρ when the prover has a witness x_A such that $y_A = g^{x_A}$. Show that there is an alternate prover algorithm for ρ making the protocol work by using a witness x_B such that $y_B = g^{x_B}$.

Have you seen a protocol like this before?

- **Q.3b** Prove that ρ satisfies the special soundness property of Σ protocols.
- **Q.3c** Prove that ρ satisfies the honest verifier zero-knowledge property of Σ protocols.
- **Q.3d** Prove that ρ is a Σ protocol for R (go through the checklist for Σ protocols) and construct a non-interactive proof system for R.
- **Q.3e** Alice wants to send an email to Bob using deniable authentication. For this, both Alice and Bob exchange their public keys y_A and y_B and their "proofs" (r_A, s_A) and (r_B, s_B) such that $\text{Verify}(y_A, r_A, s_A)$ and $\text{Verify}(y_B, r_B, s_B)$ hold. Then, Alice modifies the non-interactive proof of Q.3d by adding her message m as input to the random oracle, like for signature schemes, and uses this modified non-interactive proof to authenticate her message.

If (y_A, r_A, s_A) and (y_B, r_B, s_B) were proofs of knowledge of the discrete logarithm of y_A and y_B , show that Bob is ensured that the message comes from Alice and that he cannot forward this evidence to anyone else.

NOTE: a semi-formal argument is OK for this question.

Q.3f In the above deniable authentication scheme, by using the fact that the weak Fiat-Shamir transform does not make (y_A, r_A, s_A) be a proof of knowledge of the discrete logarithm of y_A , show that Bob can maliciously register (y_B, r_B, s_B) and later show to someone else that the message originated from Alice.

NOTE: a semi-formal argument is OK for this question.