
Advanced Cryptography — Midterm Exam

Serge Vaudenay

10.5.2015

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Recovering a Secret RSA Modulus

Some people use RSA signature with exponent e = 216 + 1 but they use too small prime
numbers p and q to be secure. So, to prevent n from being factored, they decide to keep
n = pq secret. Only legitimate verifiers will receive n.

Q.1 Given a message m ∈ Zn and a valid signature s, show that we can easily recover a
multiple of n.

Q.2 What is the complexity?
Q.3 Given a prime number r, what is roughly the probability that r divides the multiple of

n recovered in Q.1? (Assume that m is random.)
Q.4 With two message/signature (mi, si) pairs, show that we can recover n with high prob-

ability.



2 Finding Four-Term Zero Sums

Looking for collisions is frequent in cryptography. A collision of bitstrings is nothing but
a two-term zero sum, using the XOR (denoted by ⊕) to define addition. A variant of this
problem is to find four-term zero sums. For instance, if we define the signature of a pair of
strings (x1, x2) of specific format to be the signature of x1 ⊕ x2, we have a forgery attack
by looking for a four-term zero sum x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 with strings x1, x2, x3, x4 taken
from lists of strings of a specific format.

In what follows, we call a random list of ℓ-bit strings the sequence L = (x1, . . . , xn)
obtained by picking all xi independently uniformly at random in {0, 1}ℓ. We call n the
length of the list. We denote by ⊕ the bitwise XOR operation between bitstrings.

Q.1 Given two lists L1 and L2 of length n1 and n2, respectively, in the following subquestions,
we consider algorithms to find all (i, j) pairs such that the ith element of L1 and the
jth element of L2 give a XOR of zero.

Q.1a Compute n3, the expected number of such pairs (i, j).
Q.1b Give an algorithm with complexity O(n1ℓ + n2ℓ + n3 logmax(n1, n2)) to find these

n3 pairs.
In the following questions, we discard the ℓ factors from the complexities for sim-
plicity. I.e., the cost of copying or comparing ℓ-bit strings is O(1). Similarly, copying
an index i or j is assumed to take O(1).

Q.1c What is the optimal value for n1 and n2 to make n3 = 1 and minimize the complexity
at the same time? What is the complexity with these parameters?

Q.2 We denote Lj = (xj,1, . . . , xj,n). Given four lists L1, L2, L3, L4 of same length n, we want
to find tuples (i1, i2, i3, i4) such that x1,i1 ⊕ x2,i2 ⊕ x3,i3 ⊕ x4,i4 = 0.

Q.2a What is the expected number of solutions?
Give an efficient algorithm to find them all and its complexity.

Q.2b We now want to find all tuples (i1, i2, i3, i4) such that x1,i1 ⊕ x2,i2 and x3,i3 ⊕ x4,i4

have both their b most significant bits equal to zero and x1,i1 ⊕ x2,i2 = x3,i3 ⊕ x4,i4 .
What is the expected number of solutions?
Give an algorithm to find them all with complexity O(n+ n22−b + n42−ℓ−b).

Q.2c Give an optimal b and n such that we can find one expected tuple with zero XOR.
Give the corresponding complexity.
NOTE: to simplify the computations, allow b to take any real value.

Q.2d What is the complexity to obtain α ≤ n solutions instead of just one?
As an application, give n, b, and the complexity for α = n.



3 Number of Samples to Distinguish Two Distributions

Given two distributions P0 and P1, we recall that the statistical distance d(P0, P1) is defined
by

d(P0, P1) =
1

2

∑
z

|P0(z)− P1(z)|

We define the Hellinger distance H(P0, P1) by

H(P0, P1) =

√
1

2

∑
z

(√
P0(z)−

√
P1(z)

)2

If P is a distribution, we denote by P⊗n the distribution of the tuple (X1, . . . , Xn) where
all Xi are independent random variables following the distribution P .

Q.1 Show that

H(P0, P1) =

√
1−

∑
z

√
P0(z)P1(z)

Q.2 We have a biased dice with faces numbered from 1 to 6. We consider the distribution
P0 such that P0(1) =

1
6
− ε and P0(x) =

1
6
+ ε

5
for x = 2, . . . , 6. We consider the uniform

distribution P1.

Compute an asymptotic equivalent of d(P0, P1) and H(P0, P1) for ε → 0.

HINT:
√
1 + t = 1 + 1

2
t− 1

8
t2 + o(t2) when t → 0.

Q.3 Using an upper bound for d(P⊗n
0 , P⊗n

1 ) in terms of d(P0, P1), show that for n ≤ n0.5, the
advantage of any distinguisher between P0 and P1 using n samples has an advantage
lower than 0.5, where

n0.5 =
0.5

d(P0, P1)

Q.4 One problem with the previous approach is that we do not know what to say when
n ≥ n0.5. Actually, the bound we obtain is very loose, as we will see.

In the following questions, we estimate d(P⊗n
0 , P⊗n

1 ) in terms of H(P0, P1).

Q.4a Show that 1−H(P⊗n
0 , P⊗n

1 )2 = (1−H(P0, P1)
2)n.

So, as n grows, we can estimate H(P⊗n
0 , P⊗n

1 ) using H(P0, P1) with no loss at all.

Q.4b Show that

H(P0, P1)
2 ≤ d(P0, P1) ≤

√
1− (1−H(P0, P1)2)2

HINT:
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√
b
)2

≤ |a− b| = |
√
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√
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√
a+

√
b)

Q.4c Show that

1− (1−H(P0, P1)
2)n ≤ d(P⊗n

0 , P⊗n
1 ) ≤

√
1− (1−H(P0, P1)2)2n



Q.4d Consider that the advantage of the best distinguisher using n samples is an incresing
function of n that we extend over the real numbers. Let n0.5 be the value of n for
which the advantage is 0.5. Show that

0.20

− log2(1−H(P0, P1)2)
≤ n0.5 ≤

1

− log2(1−H(P0, P1)2)

HINT: log2
3
4
≈ −0.4150.

Q.5 Compare n0.5 from Q.3 and Q.4d for the example of Q.2.


