Advanced Cryptography — Midterm Exam Solution

Serge Vaudenay

2.5.2017

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 DDH Solver in a Group of Order with a Small Factor

We consider a family of cyclic groups G_s generated by some element g_s , where s is the security parameter. The group has order n_s which is divisible by some $m_s > 1$. (In the rest of the exercise, the subscript s is omitted for clarity.) We assume there is a polynomially bounded (in terms of s) algorithm to implement the multiplication in G. We further assume that m is polynomially bounded. The purpose of this exercise is to solve the Decisional Diffie-Hellman (DDH) problem in G.

Q.1 Construct a subgroup H of G with order m.

Let H be the subgroup of all s such that $x^m = 1$. Clearly, H is a subgroup: if $x, y \in H$, then $(xy)^m = x^m y^m = 1$ so $xy \in H$. Furthermore, $1^m = 1$ so $1 \in H$. Finally, $(x^{-1})^m = (x^m)^{-1} = 1$ so $x^{-1} \in H$. We can show that the order of H is m. Indeed, the cyclic group G is isomorphic to \mathbf{Z}_n so H is isomorphic to the subgroup of \mathbf{Z}_n of all y residues such that my mod n = 0. This equation is equivalent to y mod $\frac{n}{m} = 0$. This is equivalent to y being a multiple of $\frac{n}{m}$. There are exactly m such multiples. So, H has order m.

Q.2 Construct a surjective group homomorphism f from G to H with a polynomially bounded complexity (in terms of s). Describe the algorithm that implements f and prove its complexity.

Using the square-and-multiply algorithm, we can implement $f: x \mapsto x^{\frac{n}{m}}$ with polynomial complexity. Clearly, this is a group homomorphism as

$$f(xy) = (xy)^{\frac{n}{m}} = x^{\frac{n}{m}}y^{\frac{n}{m}} = f(x)f(y)$$

We can see that $f(x) \in H$ as $f(x)^m = x^n = 1$. We have $f(g) = g^{\frac{n}{m}}$ whose order can only be m as g has order n. So, f(g) generates H. We deduce that f is surjective.

Q.3 Construct a discrete logarithm algorithm in H of polynomial complexity (in terms of s). Describe the algorithm and prove its complexity.

We can compute discrete logarithm by exhaustive search, as the cardinality of H is polynomially bounded.

Q.4 Deduce a DDH distinguisher of polynomial complexity with large advantage. Compute the advantage.

Let $L_{g'}(x')$ be the function computing the discrete logarithm of x' in basis g' in H. We consider the following algorithm. Input: (g, X, Y, Z)1: compute $f(g), L_{f(g)}(f(X)), L_{f(g)}(f(Y)), L_{f(g)}(f(Z))$ 2: if $L_{f(g)}(f(Z)) \equiv L_{f(g)}(f(X))L_{f(g)}(f(Y)) \pmod{m}$ then 3: output 1 4: else 5: output 0 6: end if If (g, X, Y, Z) is a DH entry, the output is always 1. If the input (g, X, Y, Z)is random, f(Z) is a uniformly distributed random element of H, independent from the others, so the probability to output 1 is 1/#H. So, the advantage is 1 - 1/#H. Since H has at least two elements, the advantage is at least $\frac{1}{2}$.

2 MAC vs PRF

In what follows, we consider a function F from $\{0,1\}^{k_s} \times \mathcal{D}_s$ to $\{0,1\}^{\tau_s}$, where s is a security parameter. (For simplicity, s is omitted from notations hereafter.) We can see F either as a Message Authentication Code (MAC) or as a Pseudo Random Function (PRF). By default, we consider chosen message attacks and existential forgeries for the security of MAC functions.

Q.1 Give the following definitions. What does it mean for F to be a secure MAC? What does it mean for F to be a secure PRF?

 $F \text{ is a secure MAC if for any PPT algorithm } \mathcal{A},$ $\Pr[\mathcal{A}^{F(K,.)} \text{ forges}] = \operatorname{negl}(s)$ where $K \in \{0,1\}^k$ is random, (X,t) a pair of random variables defined as the output of $\mathcal{A}^{F(K,.)}$, and " $\mathcal{A}^{F(K,.)}$ forges" is the event that F(K,X) = t and that \mathcal{A} did not query X to the F(K,.) oracle. F is a secure PRF if for any PPT algorithm $\mathcal{A},$ $\Pr[\mathcal{A}^{F(K,.)} \to 1] - \Pr[\mathcal{A}^{F^*(\cdot)} \to 1] = \operatorname{negl}(s)$ where $K \in \{0,1\}^k$ is random and $F^*(\cdot)$ is a random function from \mathcal{D} to $\{0,1\}^{\tau}$.

Q.2 If F is a secure PRF and $2^{-\tau}$ is negligible (in terms of s), prove that it is a secure MAC.

We assume that F is a secure PRF. Let \mathcal{A} be a PPT chosen message attack with access to an oracle \mathcal{O} mapping \mathcal{D} elements to $\{0,1\}^{\tau}$. Let $p = \Pr[\mathcal{A}^{F(K,.)} \text{ forges}]$. We want to show that $p = \operatorname{negl}(s)$. We define \mathcal{B} as follows:

1: simulate \mathcal{A} and forward oracle queries x_i and answers t_i between \mathcal{A} and \mathcal{O} 2: eventually, \mathcal{A} outputs some (X, t) pair 3: query $\mathcal{O}(X) = t'$ 4: if X different from all x_i and t = t' then output 1 5: 6: else output 0 γ : 8: end if When \mathcal{O} is the oracle $F(K, .), \mathcal{B}$ outputs 1 with probability equal to p. When \mathcal{O} is the oracle F^* , \mathcal{B} outputs 1 with probability $q2^{-\tau}$, where q is the probability that X is different from all x_i . (Indeed, if X differs from all x_i , the value $F^*(X)$) is undetermined so independent from t; the distribution of t' is uniform an independent from t, hence the output is 1 with probability $2^{-\tau}$.) The advantage of \mathcal{B} as a PRF distinguisher is thus $p - q2^{-\tau}$. Since F is a secure PRF, we have $p = q2^{-\tau} + \operatorname{negl}(s)$. Clearly, $q2^{-\tau} < 2^{-\tau}$. Assuming that $2^{-\tau}$ is negligible, we deduce that p is negligible.

Q.3 If $2^{-\tau}$ is not negligible (in terms of s), prove that F is not a secure MAC. Describe an attack and analyze its complexity.

We define \mathcal{A} as follows: 1: set $X \in \mathcal{D}$ arbitrarily 2: pick $t \in \{0,1\}^{\tau}$ at random with uniform distribution 3: output (X,t)Clearly, X is not queried to the oracle (there is no query at all). \mathcal{A} forges with probability $2^{-\tau}$. As $2^{-\tau}$ is not negligible, the above attack shows that F is not a secure MAC.

Q.4 Let $0^{\tau} = (0, \ldots, 0) \in \{0, 1\}^{\tau}$. We assume that $2^{-\tau}$ is negligible. Given F (which is from $\{0, 1\}^k \times \mathcal{D}$ to $\{0, 1\}^{\tau}$), we consider $G(K, x) = (F(K, x), 0^{\tau})$ from $\{0, 1\}^k \times \mathcal{D}$ to $\{0, 1\}^{2\tau}$.

Q.4a If F is a secure MAC, prove that G is a secure MAC.

We consider a chosen message attack \mathcal{A} against G. Let $p = \Pr[\mathcal{A}^{G(K,.)} \text{ forges}]$. We want to show that $p = \operatorname{negl}(s)$. We define an attack \mathcal{B} against F as follows:

- 1: simulate \mathcal{A} but when it makes a query x_i , forward the query x_i , get the answer t_i , and answer $(t_i, 0^{\tau})$ to the simulation of \mathcal{A}
- 2: eventually, A outputs some (X, t) pair
- 3: if $t = (t', 0^{\tau})$ for some t' then
- 4: answer (X, t')
- 5: else
- 6: abort
- γ : end if

Clearly, \mathcal{B} forges with probability p. Since F is a secure MAC, we deduce p = negl(s).

Q.4b Prove that G is not a secure PRF, even is F is a secure PRF. Describe an attack and analyze its complexity.

We consider the following distinguisher: 1: set $X \in \mathcal{D}$ arbitrarily 2: query X to the oracle and get t 3: if t ends with τ zeros then 4: return 1 5: else 6: return 0 7: end if When the oracle is G(K, .), the distinguisher always outputs 1. When the oracle is a random function G^* , the distinguisher outputs 1 with probability $2^{-\tau}$. So, the advantage is $1 - 2^{-\tau}$. Since $\tau \ge 1$, the advantage is greater than $\frac{1}{2}$ which is not negligible. (Actually, $2^{-\tau}$ is negligible so the advantage is close to 1.) So, G is not a secure PRF.

3 Distribution in a Subgroup

We consider two odd prime numbers p and q and $g \in \mathbf{Z}_p^*$ an element of order q. Let D_1 be the uniform distribution in $\langle g \rangle$. Let D_2 be the uniform distribution in \mathbf{Z}_p^* .

Q.1 Compute d, the statistical distance between D_1 and D_2 .

All elements of $\langle g \rangle$ occur with probability $\frac{1}{q}$ resp. $\frac{1}{p-1}$ with D_1 resp. D_2 . Others occur with probability 0 resp. $\frac{1}{p-1}$. So, $d = \frac{1}{2}q \left| \frac{1}{q} - \frac{1}{p-1} \right| + \frac{1}{2}(p-1-q)\frac{1}{p-1} = 1 - \frac{q}{p-1}$

Q.2 Construct a distinguisher between D_1 and D_2 with advantage d.

Weknow from thetheory thatbestdistinguisher awould be input: X1: if $X \in \langle g \rangle$ then return 1 2:3: else return 04: 5: end if and that its advantage would be d. We can easily show again that the advantage is $1 - \frac{q}{p-1}$: with distribution D_1 , the output is always 1. with distribution D_2 , the output is 1 with probability $\frac{q}{p-1}$.

Q.3 We assume that 2 has an order bigger than q in \mathbf{Z}_p^* . We assume that $p > 2^n$ has n bits and we consider a binary encoding $\mathsf{bin} : \{0, 1\}^n \to \mathbf{Z}_p^*$ such that

$$bin(b_1, \dots, b_n) = 1 + \sum_{i=1}^n b_i 2^{i-1}$$

We use the textbook Diffie-Hellman key exchange to produce a random key K with distribution D_1 between Alice and Bob, following which Alice encrypts a message $x \in \{0,1\}^n$ by sending $y = bin(x) \times K \mod p$. Prove that if $x = (b, 0, \ldots, 0)$ where b is uniformly distributed in $\{0,1\}$, we can make a decryption attack in ciphertext-only mode. Propose a countermeasure.

If b = 0, then $y = K \in \langle g \rangle$. If b = 1, then y = 2K. If we had $2K \in \langle g \rangle$, this would imply that $2 \in \langle g \rangle$ but this is not the case as the order of 2 is bigger than q. So, $2K \notin \langle g \rangle$. So, we can deduce b by checking if y belongs to the subgroup. We can do so by checking $y^q = 1$. We could fix it by using a key derivation function (KDF) and having y =

 $bin(x) \times KDF(K).$

4 Distinguishers for 3-Round Feistel Schemes

In this exercise, we consider a 3-round Feistel scheme with round functions F_1, F_2, F_3 . The input is a pair $x = (x_l, x_r)$ and the output is a pair $y = (y_l, y_r)$. We call x_l and x_r the left input and the right input, respectively. We call y_l and y_r the left output and the right output, respectively. We define

$$z = x_l \oplus F_1(x_r)$$
 , $y_r = x_r \oplus F_2(z)$, $y_l = z \oplus F_3(y_r)$

where \oplus denotes the bitwise exclusive OR. All values are *n*-bit strings. We assume that F_1, F_2, F_3 are independent uniformly distributed random functions.

- **Q.1** In the following subquestions, we consider distinguishers between the Feistel scheme and a uniformly distributed random function over 2n-bit strings which are limited to q chosen input queries.
 - **Q.1a** Construct a distinguisher with advantage roughly $\frac{q^2}{2}2^{-n}$. HINT: Consider a distinguisher making q chosen inputs $x = (x_l, a)$ for a fixed value a and q different values x_l , getting $y = (y_l, y_r)$ and expecting to find two outputs sharing the same y_r . Make a decision based on the obtained input-output pairs.

We consider the following distinguisher: 1: pick $a \in \{0,1\}^n$ arbitrarily 2: for q pairwise different x_l , query $x = (x_l, a)$ and collect $y = (y_l, y_r)$ 3: for each pair (x, x') such that $x \neq x'$ and $y_r = y'_r$ do 4: if $x_l \oplus y_l \neq x'_l \oplus y'_l$ then 5: return 0 6: end if 7: end for 8: return 1 When querying a Feistel scheme, if $x_r = x'_r$ and $y_r = y'_r$, we notice that

$$x_l \oplus y_l = F_1(x_r) \oplus F_3(y_r) = F_1(x'_r) \oplus F_3(y'_r) = x'_l \oplus y'_l$$

So, the output is never 0 for the Feistel scheme. The probability that the output is 0 for a random function is the probability p_1 that we find a pair (x, x') with $x \neq x'$ and $y_r = y'_r$, multiplied by the probability p_2 that at least one of these pairs satisfies $x_l \oplus y_l \neq x'_l \oplus y'_l$. The advantage is thus p_1p_2 . We have

$$1 - p_1 = (1 - 2^{-n})(1 - 2 \cdot 2^{-n}) \cdots (1 - (q - 1) \cdot 2^{-n}) \ge 1 - \frac{q(q - 1)}{2} 2^{-n}$$

so $p_1 \approx \frac{q^2}{2} 2^{-n}$. Given a pair, the probability that $x_l \oplus y_l = x'_l \oplus y'_l$ is 2^{-n} . So, $p_2 \ge 1 - 2^{-n}$. Hence, the advantage is roughly $\frac{q^2}{2} 2^{-n}$. Q.1b Give an upper bound for the advantage of any distinguisher limited to q queries.

The Luby-Rackoff Theorem says that the advantage is bounded by $q^2 \cdot 2^{-n}$. So, the distinguisher from the previous question is close to optimal, if not optimal already.

Q.2 In this question, we consider a stronger security notion. The adversary has access to the encryption oracle (chosen plaintext) and to the decryption oracle (chosen ciphertext). We consider distinguishers between the Feistel scheme and a uniformly distributed random permutation over 2n-bit strings which are limited to q chosen plaintext or ciphertext queries.

We consider the following distinguisher:

- 1: select a nonzero $\delta \in \{0,1\}^n$ arbitrarily
- 2: pick $x = (x_l, x_r) \in \{0, 1\}^{2n}$ at random
- 3: set $x' = (x_l \oplus \delta, x_r)$
- 4: query with input x and x' and get $y = (y_l, y_r)$ and $y' = (y'_l, y'_r)$
- 5: set $y'' = (y_l \oplus \delta, y_r)$
- 6: query with output y'' and get $x'' = (x''_l, x''_r)$
- 7: take a decision based on $x,y,x^{\prime},y^{\prime},x^{\prime\prime},y^{\prime\prime}$

Complete the last step to get a very good advantage and estimate it.

The distinguisher outputs 1 if and only if

$$y_r \oplus x_r'' = y_r' \oplus x_r$$

Indeed, for the Feistel scheme, we have

$$y_r \oplus x_r'' = y_r \oplus y_r'' \oplus F_2(y_l'' \oplus F_3(y_r'')) = F_2(y_l \oplus \delta \oplus F_3(y_r)) = F_2(x_l \oplus \delta \oplus F_1(x_r))$$

and

$$y'_r \oplus x_r = x'_r \oplus F_2(x'_l \oplus F_1(x'_r)) \oplus x_r = F_2(x_l \oplus \delta \oplus F_1(x_r))$$

so the distinguisher always outputs 1.

For the random permutation, x and x' are two different random inputs, so yand y' are two different random outputs. There is a small probability $\frac{1}{2^{2n}-1}$ that the event E that y'' = y' occurs. If not the case, then x'' is a random input different from x and x'. So, x''_r is equal to x_r with probability $\frac{2^n-2}{2^{2n}-2}$ and equal to any other value t with probability $\frac{2^n}{2^{2n}-2}$. Hence,

$$\Pr[y_r \oplus x_r'' = y_r' \oplus x_r] \le \Pr[E] + \frac{2^n}{2^{2n} - 2} \le \frac{1}{2^{2n} - 1} + \frac{2^n}{2^{2n} - 2}$$

So, the advantage is close to 1.