Advanced Cryptography - Midterm Exam Solution

Serge Vaudenay

2.5.2017

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 DDH Solver in a Group of Order with a Small Factor

We consider a family of cyclic groups G_{s} generated by some element g_{s}, where s is the security parameter. The group has order n_{s} which is divisible by some $m_{s}>1$. (In the rest of the exercise, the subscript s is omitted for clarity.) We assume there is a polynomially bounded (in terms of s) algorithm to implement the multiplication in G. We further assume that m is polynomially bounded. The purpose of this exercise is to solve the Decisional Diffie-Hellman (DDH) problem in G.
Q. 1 Construct a subgroup H of G with order m.

Let H be the subgroup of all s such that $x^{m}=1$. Clearly, H is a subgroup: if $x, y \in H$, then $(x y)^{m}=x^{m} y^{m}=1$ so $x y \in H$. Furthermore, $1^{m}=1$ so $1 \in H$. Finally, $\left(x^{-1}\right)^{m}=\left(x^{m}\right)^{-1}=1$ so $x^{-1} \in H$.
We can show that the order of H is m. Indeed, the cyclic group G is isomorphic to \mathbf{Z}_{n} so H is isomorphic to the subgroup of \mathbf{Z}_{n} of all y residues such that $m y \bmod n=0$. This equation is equivalent to $y \bmod \frac{n}{m}=0$. This is equivalent to y being a multiple of $\frac{n}{m}$. There are exactly m such multiples. So, H has order m.
Q. 2 Construct a surjective group homomorphism f from G to H with a polynomially bounded complexity (in terms of s). Describe the algorithm that implements f and prove its complexity.

Using the square-and-multiply algorithm, we can implement $f: x \mapsto x^{\frac{n}{m}}$ with polynomial complexity. Clearly, this is a group homomorphism as

$$
f(x y)=(x y)^{\frac{n}{m}}=x^{\frac{n}{m}} y^{\frac{n}{m}}=f(x) f(y)
$$

We can see that $f(x) \in H$ as $f(x)^{m}=x^{n}=1$.
We have $f(g)=g^{\frac{n}{m}}$ whose order can only be m as g has order n. So, $f(g)$ generates H. We deduce that f is surjective.
Q. 3 Construct a discrete logarithm algorithm in H of polynomial complexity (in terms of $s)$. Describe the algorithm and prove its complexity.

We can compute discrete logarithm by exhaustive search, as the cardinality of H is polynomially bounded.
Q. 4 Deduce a DDH distinguisher of polynomial complexity with large advantage. Compute the advantage.

Let $L_{g^{\prime}}\left(x^{\prime}\right)$ be the function computing the discrete logarithm of x^{\prime} in basis g^{\prime} in H. We consider the following algorithm.
Input: (g, X, Y, Z)
1: compute $f(g), L_{f(g)}(f(X)), L_{f(g)}(f(Y)), L_{f(g)}(f(Z))$
: if $L_{f(g)}(f(Z)) \equiv L_{f(g)}(f(X)) L_{f(g)}(f(Y))(\bmod m)$ then output 1
else output 0
end if
If (g, X, Y, Z) is a DH entry, the output is always 1. If the input (g, X, Y, Z) is random, $f(Z)$ is a uniformly distributed random element of H, independent from the others, so the probability to output 1 is $1 / \# H$. So, the advantage is $1-1 / \# H$. Since H has at least two elements, the advantage is at least $\frac{1}{2}$.

2 MAC vs PRF

In what follows, we consider a function F from $\{0,1\}^{k_{s}} \times \mathcal{D}_{s}$ to $\{0,1\}^{\tau_{s}}$, where s is a security parameter. (For simplicity, s is omitted from notations hereafter.) We can see F either as a Message Authentication Code (MAC) or as a Pseudo Random Function (PRF). By default, we consider chosen message attacks and existential forgeries for the security of MAC functions.
Q. 1 Give the following definitions. What does it mean for F to be a secure MAC? What does it mean for F to be a secure PRF?

$$
\begin{aligned}
& F \text { is a secure } M A C \text { if for any PPT algorithm } \mathcal{A}, \\
& \qquad \operatorname{Pr}\left[\mathcal{A}^{F(K, .)} \text { forges }\right]=\operatorname{negl}(s)
\end{aligned}
$$

where $K \in\{0,1\}^{k}$ is random, (X, t) a pair of random variables defined as the output of $\mathcal{A}^{F(K, .)}$, and " $\mathcal{A}^{F(K, .)}$ forges" is the event that $F(K, X)=t$ and that \mathcal{A} did not query X to the $F(K,$.$) oracle.$ F is a secure PRF if for any PPT algorithm \mathcal{A},

$$
\operatorname{Pr}\left[\mathcal{A}^{F(K, .)} \rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{A}^{F^{*}(\cdot)} \rightarrow 1\right]=\operatorname{negl}(s)
$$

where $K \in\{0,1\}^{k}$ is random and $F^{*}(\cdot)$ is a random function from \mathcal{D} to $\{0,1\}^{\tau}$.
Q. 2 If F is a secure PRF and $2^{-\tau}$ is negligible (in terms of s), prove that it is a secure MAC.

We assume that F is a secure PRF. Let \mathcal{A} be a PPT chosen message attack with access to an oracle \mathcal{O} mapping \mathcal{D} elements to $\{0,1\}^{\tau}$. Let $p=$ $\operatorname{Pr}\left[\mathcal{A}^{F(K, .)}\right.$ forges $]$. We want to show that $p=\operatorname{negl}(s)$. We define \mathcal{B} as follows:
simulate \mathcal{A} and forward oracle queries x_{i} and answers t_{i} between \mathcal{A} and \mathcal{O} eventually, \mathcal{A} outputs some (X, t) pair
query $\mathcal{O}(X)=t^{\prime}$
if X different from all x_{i} and $t=t^{\prime}$ then
output 1
else
output 0
end if
When \mathcal{O} is the oracle $F(K,),. \mathcal{B}$ outputs 1 with probability equal to p. When \mathcal{O} is the oracle F^{*}, \mathcal{B} outputs 1 with probability $q 2^{-\tau}$, where q is the probability that X is different from all x_{i}. (Indeed, if X differs from all x_{i}, the value $F^{*}(X)$ is undetermined so independent from t; the distribution of t^{\prime} is uniform an independent from t, hence the output is 1 with probability $2^{-\tau}$.) The advantage of \mathcal{B} as a PRF distinguisher is thus $p-q 2^{-\tau}$. Since F is a secure PRF, we have $p=q 2^{-\tau}+\operatorname{negl}(s)$. Clearly, $q 2^{-\tau} \leq 2^{-\tau}$. Assuming that $2^{-\tau}$ is negligible, we deduce that p is negligible.
Q. 3 If $2^{-\tau}$ is not negligible (in terms of s), prove that F is not a secure MAC. Describe an attack and analyze its complexity.

```
We define \(\mathcal{A}\) as follows:
    1: set \(X \in \mathcal{D}\) arbitrarily
    2: pick \(t \in\{0,1\}^{\tau}\) at random with uniform distribution
    output \((X, t)\)
```

Clearly, X is not queried to the oracle (there is no query at all). \mathcal{A} forges with
probability $2^{-\tau}$. As $2^{-\tau}$ is not negligible, the above attack shows that F is not
a secure MAC.
Q. 4 Let $0^{\tau}=(0, \ldots, 0) \in\{0,1\}^{\tau}$. We assume that $2^{-\tau}$ is negligible. Given F (which is from $\{0,1\}^{k} \times \mathcal{D}$ to $\left.\{0,1\}^{\tau}\right)$, we consider $G(K, x)=\left(F(K, x), 0^{\tau}\right)$ from $\{0,1\}^{k} \times \mathcal{D}$ to $\{0,1\}^{2 \tau}$.
Q.4a If F is a secure MAC, prove that G is a secure MAC.

We consider a chosen message attack \mathcal{A} against G. Let $p=\operatorname{Pr}\left[\mathcal{A}^{G(K, .)}\right.$ forges $]$. We want to show that $p=\operatorname{negl}(s)$. We define an attack \mathcal{B} against F as follows:
simulate \mathcal{A} but when it makes a query x_{i}, forward the query x_{i}, get the
answer t_{i}, and answer $\left(t_{i}, 0^{\tau}\right)$ to the simulation of \mathcal{A}
eventually, \mathcal{A} outputs some (X, t) pair
if $t=\left(t^{\prime}, 0^{\tau}\right)$ for some t^{\prime} then answer (X, t^{\prime})
else
abort
end if
Clearly, \mathcal{B} forges with probability p. Since F is a secure $M A C$, we deduce $p=$ negl (s).
Q.4b Prove that G is not a secure PRF, even is F is a secure PRF. Describe an attack and analyze its complexity.

```
We consider the following distinguisher:
    set X \in\mathcal{D}\mathrm{ arbitrarily}
    query }X\mathrm{ to the oracle and get t
    if t ends with }\tau\mathrm{ zeros then
        return 1
    else
        return 0
    end if
```

When the oracle is $G(K,$.$) , the distinguisher always outputs 1. When the oracle$ is a random function G^{*}, the distinguisher outputs 1 with probability $2^{-\tau}$. So, the advantage is $1-2^{-\tau}$. Since $\tau \geq 1$, the advantage is greater than $\frac{1}{2}$ which is not negligible. (Actually, $2^{-\tau}$ is negligible so the advantage is close to 1.) So, G is not a secure PRF.

3 Distribution in a Subgroup

We consider two odd prime numbers p and q and $g \in \mathbf{Z}_{p}^{*}$ an element of order q. Let D_{1} be the uniform distribution in $\langle g\rangle$. Let D_{2} be the uniform distribution in \mathbf{Z}_{p}^{*}.
Q. 1 Compute d, the statistical distance between D_{1} and D_{2}.

All elements of $\langle g\rangle$ occur with probability $\frac{1}{q}$ resp. $\frac{1}{p-1}$ with D_{1} resp. D_{2}. Others occur with probability 0 resp. $\frac{1}{p-1}$. So,

$$
d=\frac{1}{2} q\left|\frac{1}{q}-\frac{1}{p-1}\right|+\frac{1}{2}(p-1-q) \frac{1}{p-1}=1-\frac{q}{p-1}
$$

Q. 2 Construct a distinguisher between D_{1} and D_{2} with advantage d.
We know from the theory that a best distinguisher would
be
input: X
1: if $X \in\langle g\rangle$ then
2: return 1
3: else
4: return 0
5: end if
and that its advantage would be d. We can easily show again that the advantage
is $1-\frac{q}{p-1}:$ with distribution D_{1}, the output is always 1. with distribution D_{2},
the output is 1 with probability $\frac{q}{p-1}$.
Q. 3 We assume that 2 has an order bigger than q in \mathbf{Z}_{p}^{*}. We assume that $p>2^{n}$ has n bits and we consider a binary encoding bin : $\{0,1\}^{n} \rightarrow \mathbf{Z}_{p}^{*}$ such that

$$
\operatorname{bin}\left(b_{1}, \ldots, b_{n}\right)=1+\sum_{i=1}^{n} b_{i} 2^{i-1}
$$

We use the textbook Diffie-Hellman key exchange to produce a random key K with distribution D_{1} between Alice and Bob, following which Alice encrypts a message $x \in$ $\{0,1\}^{n}$ by sending $y=\operatorname{bin}(x) \times K \bmod p$. Prove that if $x=(b, 0, \ldots, 0)$ where b is uniformly distributed in $\{0,1\}$, we can make a decryption attack in ciphertext-only mode. Propose a countermeasure.

If $b=0$, then $y=K \in\langle g\rangle$. If $b=1$, then $y=2 K$. If we had $2 K \in\langle g\rangle$, this would imply that $2 \in\langle g\rangle$ but this is not the case as the order of 2 is bigger than q. So, $2 K \notin\langle g\rangle$. So, we can deduce b by checking if y belongs to the subgroup. We can do so by checking $y^{q}=1$.
We could fix it by using a key derivation function (KDF) and having $y=$ $\operatorname{bin}(x) \times \mathrm{KDF}(K)$.

4 Distinguishers for 3-Round Feistel Schemes

In this exercise, we consider a 3 -round Feistel scheme with round functions F_{1}, F_{2}, F_{3}. The input is a pair $x=\left(x_{l}, x_{r}\right)$ and the output is a pair $y=\left(y_{l}, y_{r}\right)$. We call x_{l} and x_{r} the left input and the right input, respectively. We call y_{l} and y_{r} the left output and the right output, respectively. We define

$$
z=x_{l} \oplus F_{1}\left(x_{r}\right) \quad, \quad y_{r}=x_{r} \oplus F_{2}(z) \quad, \quad y_{l}=z \oplus F_{3}\left(y_{r}\right)
$$

where \oplus denotes the bitwise exclusive OR. All values are n-bit strings. We assume that F_{1}, F_{2}, F_{3} are independent uniformly distributed random functions.
Q. 1 In the following subquestions, we consider distinguishers between the Feistel scheme and a uniformly distributed random function over $2 n$-bit strings which are limited to q chosen input queries.
Q.1a Construct a distinguisher with advantage roughly $\frac{q^{2}}{2} 2^{-n}$.

HINT: Consider a distinguisher making q chosen inputs $x=\left(x_{l}, a\right)$ for a fixed value a and q different values x_{l}, getting $y=\left(y_{l}, y_{r}\right)$ and expecting to find two outputs sharing the same y_{r}. Make a decision based on the obtained input-output pairs.

We consider the following distinguisher:
pick $a \in\{0,1\}^{n}$ arbitrarily
for q pairwise different x_{l}, query $x=\left(x_{l}, a\right)$ and collect $y=\left(y_{l}, y_{r}\right)$
for each pair $\left(x, x^{\prime}\right)$ such that $x \neq x^{\prime}$ and $y_{r}=y_{r}^{\prime}$ do
if $x_{l} \oplus y_{l} \neq x_{l}^{\prime} \oplus y_{l}^{\prime}$ then return 0
end if
end for
return 1
When querying a Feistel scheme, if $x_{r}=x_{r}^{\prime}$ and $y_{r}=y_{r}^{\prime}$, we notice that

$$
x_{l} \oplus y_{l}=F_{1}\left(x_{r}\right) \oplus F_{3}\left(y_{r}\right)=F_{1}\left(x_{r}^{\prime}\right) \oplus F_{3}\left(y_{r}^{\prime}\right)=x_{l}^{\prime} \oplus y_{l}^{\prime}
$$

So, the output is never 0 for the Feistel scheme. The probability that the output is 0 for a random function is the probability p_{1} that we find a pair $\left(x, x^{\prime}\right)$ with $x \neq x^{\prime}$ and $y_{r}=y_{r}^{\prime}$, multiplied by the probability p_{2} that at least one of these pairs satisfies $x_{l} \oplus y_{l} \neq x_{l}^{\prime} \oplus y_{l}^{\prime}$. The advantage is thus $p_{1} p_{2}$.
We have

$$
1-p_{1}=\left(1-2^{-n}\right)\left(1-2 \cdot 2^{-n}\right) \cdots\left(1-(q-1) \cdot 2^{-n}\right) \geq 1-\frac{q(q-1)}{2} 2^{-n}
$$

so $p_{1} \approx \frac{q^{2}}{2} 2^{-n}$.
Given a pair, the probability that $x_{l} \oplus y_{l}=x_{l}^{\prime} \oplus y_{l}^{\prime}$ is 2^{-n}. So, $p_{2} \geq 1-2^{-n}$. Hence, the advantage is roughly $\frac{q^{2}}{2} 2^{-n}$.
Q.1b Give an upper bound for the advantage of any distinguisher limited to q queries. The Luby-Rackoff Theorem says that the advantage is bounded by $q^{2} .2^{-n}$. So, the distinguisher from the previous question is close to optimal, if not optimal already.
Q. 2 In this question, we consider a stronger security notion. The adversary has access to the encryption oracle (chosen plaintext) and to the decryption oracle (chosen ciphertext). We consider distinguishers between the Feistel scheme and a uniformly distributed random permutation over $2 n$-bit strings which are limited to q chosen plaintext or ciphertext queries.
We consider the following distinguisher:
1: select a nonzero $\delta \in\{0,1\}^{n}$ arbitrarily
2: pick $x=\left(x_{l}, x_{r}\right) \in\{0,1\}^{2 n}$ at random
3: set $x^{\prime}=\left(x_{l} \oplus \delta, x_{r}\right)$
4: query with input x and x^{\prime} and get $y=\left(y_{l}, y_{r}\right)$ and $y^{\prime}=\left(y_{l}^{\prime}, y_{r}^{\prime}\right)$
5: set $y^{\prime \prime}=\left(y_{l} \oplus \delta, y_{r}\right)$
6: query with output $y^{\prime \prime}$ and get $x^{\prime \prime}=\left(x_{l}^{\prime \prime}, x_{r}^{\prime \prime}\right)$
7: take a decision based on $x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}$
Complete the last step to get a very good advantage and estimate it.
The distinguisher outputs 1 if and only if

$$
y_{r} \oplus x_{r}^{\prime \prime}=y_{r}^{\prime} \oplus x_{r}
$$

Indeed, for the Feistel scheme, we have
$y_{r} \oplus x_{r}^{\prime \prime}=y_{r} \oplus y_{r}^{\prime \prime} \oplus F_{2}\left(y_{l}^{\prime \prime} \oplus F_{3}\left(y_{r}^{\prime \prime}\right)\right)=F_{2}\left(y_{l} \oplus \delta \oplus F_{3}\left(y_{r}\right)\right)=F_{2}\left(x_{l} \oplus \delta \oplus F_{1}\left(x_{r}\right)\right)$
and

$$
y_{r}^{\prime} \oplus x_{r}=x_{r}^{\prime} \oplus F_{2}\left(x_{l}^{\prime} \oplus F_{1}\left(x_{r}^{\prime}\right)\right) \oplus x_{r}=F_{2}\left(x_{l} \oplus \delta \oplus F_{1}\left(x_{r}\right)\right)
$$

so the distinguisher always outputs 1 .
For the random permutation, x and x^{\prime} are two different random inputs, so y and y^{\prime} are two different random outputs. There is a small probability $\frac{1}{2^{2 n}-1}$ that the event E that $y^{\prime \prime}=y^{\prime}$ occurs. If not the case, then $x^{\prime \prime}$ is a random input different from x and $x^{\prime} . S o, x_{r}^{\prime \prime}$ is equal to x_{r} with probability $\frac{2^{n}-2}{2^{2 n}-2}$ and equal to any other value t with probability $\frac{2^{n}}{2^{2 n}-2}$. Hence,

$$
\operatorname{Pr}\left[y_{r} \oplus x_{r}^{\prime \prime}=y_{r}^{\prime} \oplus x_{r}\right] \leq \operatorname{Pr}[E]+\frac{2^{n}}{2^{2 n}-2} \leq \frac{1}{2^{2 n}-1}+\frac{2^{n}}{2^{2 n}-2}
$$

So, the advantage is close to 1 .

