Advanced Cryptography — Final Exam

Serge Vaudenay

26.6.2018

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Ciphertext Collision in Semantically Secure Cryptosystems

We consider a public-key cryptosystem (Gen, \mathcal{M} , Enc, Dec). We assume perfect correctness, i.e. for all s and all $x \in \mathcal{M}$, if $(K_p, K_s) \leftarrow \text{Gen}(1^s)$ then

$$\Pr[\mathsf{Dec}_{K_s}(\mathsf{Enc}_{K_p}(x)) = x] = 1$$

Given a probabilistic polynomial-time adversary \mathcal{A} , we consider the following game:

Game
$$\Gamma_{\mathcal{A}}(s)$$
:
1: $(K_p, K_s) \leftarrow \text{Gen}(1^s)$
2: $X \leftarrow \mathcal{A}(K_p)$
3: $Y_0 \leftarrow \text{Enc}_{K_p}(X)$
4: $Y_1 \leftarrow \text{Enc}_{K_p}(X)$
5: return $1_{Y_0=Y_1}$

Q.1 Prove that if the cryptosystem is IND-CPA secure, then $\Pr[\Gamma_{\mathcal{A}}(s) \to 1]$ is negligible. Hint: construct an IND-CPA adversary with advantage related to $\Pr[\Gamma_{\mathcal{A}}(s) \to 1]$.

2 Non-Malleability in Adaptive Security

We consider a public-key cryptosystem (Gen, \mathcal{M} , Enc, Dec). We assume perfect correctness, i.e. for all s and all $x \in \mathcal{M}$, if $(K_p, K_s) \leftarrow \text{Gen}(1^s)$ then

$$\Pr[\mathsf{Dec}_{K_s}(\mathsf{Enc}_{K_p}(x)) = x] = 1$$

Given an adversary in two parts $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$, a bit $b \in \{0, 1\}$, and the security parameter s, we define the IND-CCA game as follows:

Game IND-CCA^b_A(s) 1: $(K_p, K_s) \leftarrow \text{Gen}(1^s)$ 2: $(X_0, X_1, \sigma) \leftarrow \mathcal{A}_1^{\mathcal{O}_1(\cdot)}(K_p) \qquad \triangleright \sigma \text{ is a "state" for } \mathcal{A}_1 \text{ to transmit data to } \mathcal{A}_2$ 3: $Y \leftarrow \text{Enc}_{K_p}(X_b)$ 4: $b' \leftarrow \mathcal{A}_2^{\mathcal{O}_2(\cdot)}(\sigma, Y)$ 5: return b'

where the oracles \mathcal{O}_1 and \mathcal{O}_2 are defined as follows:

Oracle $\mathcal{O}_1(y)$: 1: return $\text{Dec}_{K_s}(y)$ Oracle $\mathcal{O}_2(y)$: 2: if y = Y then 3: abort the game 4: end if 5: return $\text{Dec}_{K_s}(y)$

We define the advantage

$$\mathsf{Adv}^{\mathsf{IND-CCA}}_{\mathcal{A}}(s) = \Pr[\mathsf{IND-CCA}^1_{\mathcal{A}}(s) \to 1] - \Pr[\mathsf{IND-CCA}^0_{\mathcal{A}}(s) \to 1]$$

We say that the cryptosystem is IND-CCA secure if for all probabilistic polynomial time (PPT) adversary \mathcal{A} , $\mathsf{Adv}_{\mathcal{A}}^{\mathsf{IND-CCA}}(s)$ is negligible.

- **Q.1** The definition of IND-CCA security which was given in the course (Def.5.5 on p.55– 56 in the lecture notes, or slide p.404) was based on an interactive game between an adversary and a challenger. Prove that the two styles of definition for IND-CCA security are equivalent. (Carefully construct $(\mathcal{A}_1, \mathcal{A}_2)$ from an interactive adversary and an interactive adversary from $(\mathcal{A}_1, \mathcal{A}_2)$.)
- **Q.2** Let $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ be an IND-CCA adversary. We define another IND-CCA adversary as follows:
 - Algorithm $\mathcal{B}_{1}^{\mathcal{O}_{1}(\cdot)}(K_{p})$ 1: simulate $\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}(K_{p}) \rightarrow (X_{0}, X_{1}, \sigma)$ 2: if $X_{0} = X_{1}$ then 3: set $\sigma' \leftarrow (\sigma, 1)$ 4: pick an arbitrary X such that $X \neq X_{1}$

```
5:
                return (X, X_1, \sigma')
       6: else
                set \sigma' \leftarrow (\sigma, 0)
       7:
                return (X_0, X_1, \sigma')
       8:
       9: end if
     Algorithm \mathcal{B}_2^{\mathcal{O}_2(\cdot)}(\sigma',Y)
      10: parse \sigma' = (\sigma, c)
      11: if c = 1 then
                return 0
      12:
      13: else
                simulate \mathcal{A}_2^{\mathcal{O}_2(\cdot)}(\sigma, Y) \to b'
      14:
                return b'
      15:
      16: end if
Prove that
```

$$\mathsf{Adv}_{\mathcal{A}}^{\mathsf{IND-CCA}}(s) = \mathsf{Adv}_{\mathcal{B}}^{\mathsf{IND-CCA}}(s)$$

Deduce that we can always assume $X_0 \neq X_1$ in an IND-CCA adversary.

We now define the NM-CCA game (for non-malleability) as follows:

 $\textbf{Game NM-CCA}^b_{\mathcal{A}}(s)$ 1: $(K_p, K_s) \leftarrow \mathsf{Gen}(1^s)$ 2: $(M, \sigma) \leftarrow \mathcal{A}_1^{\mathcal{O}_1(\cdot)}(K_p) \triangleright \sigma$ is a "state" which allows \mathcal{A}_1 to transmit data to \mathcal{A}_2 3: $X_0 \leftarrow M$ $\triangleright M$ is a sampling algorithm defined by \mathcal{A}_1 4: $X_1 \leftarrow M$ \triangleright we sample two independent plaintexts using M 5: $Y \leftarrow \mathsf{Enc}_{K_p}(X_1)$ 6: $(R, Y'_1, \ldots, Y'_n) \leftarrow \mathcal{A}_2^{\mathcal{O}_2(\cdot)}(\sigma, Y)$ 7: $X'_i \leftarrow \mathsf{Dec}_{K_s}(Y'_i), i = 1, \ldots, n$ $\triangleright R$ is a poly. algo. returning a boolean 8: if $Y \notin \{Y'_1, \ldots, Y'_n\}$ and $\perp \notin \{X'_1, \ldots, X'_n\}$ and $R(X_b, X'_1, \ldots, X'_n)$ then return 1 9: 10: else 11: return 0 12: end if

We use the same oracles \mathcal{O}_1 and \mathcal{O}_2 as for IND-CCA. We define

$$\mathsf{Adv}^{\mathsf{NM-CCA}}_{\mathcal{A}}(s) = \Pr[\mathsf{NM-CCA}^{1}_{\mathcal{A}}(s) \to 1] - \Pr[\mathsf{NM-CCA}^{0}_{\mathcal{A}}(s) \to 1]$$

We say that the cryptosystem is NM-CCA secure if for all probabilistic polynomial time (PPT) adversary \mathcal{A} , $\mathsf{Adv}_{\mathcal{A}}^{\mathsf{NM-CCA}}(s)$ is negligible.

The goal of this exercise is to show the equivalence between NM-CCA security and IND-CCA security.

Q.3 We assume that \mathcal{M} has a group structure (additively denoted), with at least two different elements 0 and 1, 0 being neutral. Assume that there is a polynomial algorithm lnc such that for all s,

$$\Pr\left[\mathsf{Dec}_{K_s}(\mathsf{Inc}_{K_p}(\mathsf{Enc}_{K_p}(X))) = X + 1\right] = 1$$

for $(K_p, K_s) \leftarrow \text{Gen}(1^s)$. By constructing an adversary $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$, prove that the cryptosystem is not NM-CCA secure.

(The precision of the proof is important.)

HINT: use M sampling in a set of two different plaintexts and R defined by $R(X, X') = 1_{X'=X+1}$.

Q.4 Given an NM-CCA adversary $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$, we construct an IND-CCA adversary $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ as follows:

Algorithm
$$\mathcal{B}_{1}^{\mathcal{O}_{1}(\cdot)}(K_{p})$$

1: simulate $\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}(K_{p}) \rightarrow (M, \sigma)$
2: sample $z_{0} \leftarrow M$
3: sample $z_{1} \leftarrow M$
4: set $\sigma' \leftarrow (z_{0}, z_{1}, \sigma)$
5: return (z_{0}, z_{1}, σ)
6: parse $\sigma' = (z_{0}, z_{1}, \sigma)$
7: simulate $\mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \rightarrow (R, Y'_{1}, \dots, Y'_{n})$
8: for $i = 1, \dots, n$ do
9: if $Y = Y'_{i}$ then return 0
10: $X'_{i} \leftarrow \mathcal{O}_{2}(Y'_{i})$
11: if $X'_{i} = \bot$ then return 0
12: end for
13: compute $b' \leftarrow R(z_{1}, X'_{1}, \dots, X'_{n})$
14: return b'
Prove that

$$\mathsf{Adv}_{\mathcal{B}}^{\mathsf{IND-CCA}}(s) = \mathsf{Adv}_{\mathcal{A}}^{\mathsf{NM-CCA}}(s)$$

Deduce that IND-CCA security implies NM-CCA security.

Q.5 We assume that \mathcal{M} has at least four elements.

Given an IND-CCA adversary $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$, we construct an NM-CCA adversary $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ as follows:

Algorithm
$$\mathcal{B}_{1}^{\mathcal{O}_{1}(\cdot)}(K_{p})$$

1: simulate $\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}(K_{p}) \rightarrow (z_{0}, z_{1}, \sigma)$
2: define M sampling in $\{z_{0}, z_{1}\}$ with uniform distribution
3: set $\sigma' \leftarrow (\sigma, K_{p}, z_{0}, z_{1})$
4: return (M, σ')
Algorithm $\mathcal{B}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma', Y)$
5: parse $\sigma' = (\sigma, K_{p}, z_{0}, z_{1})$

- 6: take an injective function T on \mathcal{M} such that $T(z_0) \notin \{z_0, z_1\}$ and $T(z_1) \notin \{z_0, z_1\}$ $\{z_0, z_1\}$ 7: simulate $\mathcal{A}_2^{\mathcal{O}_2(\cdot)}(\sigma, Y) \to b'$ 8: $Y' \leftarrow \mathsf{Enc}_{K_p}(T(z_{b'}))$ 9: define $R(X, X') = 1_{T(X)=X'}$

- 10: return (R, Y')

Prove that

$$\mathsf{Adv}^{\mathsf{NM-CCA}}_{\mathcal{B}}(s) = \frac{1}{2}\mathsf{Adv}^{\mathsf{IND-CCA}}_{\mathcal{A}}(s)$$

Deduce that NM-CCA security implies IND-CCA security. HINT₁: assume without loss of generality that $z_0 \neq z_1$ HINT₂: compute $\Pr[X_0 = z_{b'}]$, $\Pr[X_1 = z_{b'}|X_1 = z_1]$, and $\Pr[X_1 = z_{b'}|X_1 = z_0]$.

3 Unruh Transform from Σ to NIZK

We consider a Σ protocol (P, V) for a relation R. We let E be the set of challenges. Given some parameters t and $m \geq 2$, we define the following non-interactive zero-knowledge proof (NIZK), with input (x, w) such that R(x, w) holds:

```
Algorithm \mathsf{Proof}(x, w):
  1: for i = 1 to t do
           pick a sequence of fresh coins \rho_i
 2:
           set a_i \leftarrow P(x, w; \rho_i)
 3:
           for j = 1 to m do
 4:
               pick e_{i,j} \in E - \{e_{i,1}, \dots, e_{i,j-1}\} at random
  5:
               set z_{i,j} \leftarrow P(x, w, e_{i,j}; \rho_i)
  6:
               set h_{i,i} \leftarrow G(z_{i,i})
 7:
           end for
 8:
 9: end for
10: set h \leftarrow H(x, (a_i, (e_{i,j}, h_{i,j})_{j=1,\dots,m})_{i=1,\dots,t})
11: set (J_1, \ldots, J_t) \leftarrow h
12: set z_i = z_{i,J_i} for i = 1, ..., t
13: set \pi = (a_i, (e_{i,j}, h_{i,j})_{j=1,\dots,m}, z_i)_{i=1,\dots,t}
14: return \pi
```

This algorithm uses two random oracles G and H. Oracle H is assumed to return a t-tuple of integers between 1 and m. We use the following verification algorithm (with some missing step):

Algorithm Verify (x, π) : 1: parse $\pi = (a_i, (e_{i,j}, h_{i,j})_{j=1,...,m}, z_i)_{i=1,...,t}$ 2: set $h \leftarrow H(x, (a_i, (e_{i,j}, h_{i,j})_{j=1,...,m})_{i=1,...,t})$ 3: set $(J_1, \ldots, J_t) \leftarrow h$ 4: verify \cdots 5: verify $V(x, a_i, e_{i,J_i}, z_i)$ for $i = 1, \ldots, t$ 6: verify $h_{i,J_i} = G(z_i)$ for $i = 1, \ldots, t$ 7: return 1 if all verifications passed

Q.1 By taking the verification with the missing step, give an algorithm to forge a proof given x but without the knowledge of w. Which step should be added to have a sound proof?

Which step should be added to have a sound proof?

- **Q.2** With the new verification step from the last question, given an algorithm with complexity $\mathcal{O}(m^t)$ to forge a valid π from x but without w.
- **Q.3** Construct a simulator in the random oracle model to show that the protocol is non-interactive zero-knowledge.
- **Q.4** Let $P^*(x)$ be an algorithm taking x as input, interacting with G and H, and forging a valid π with probability p. Use the next questions to prove that there is an extractor who can run P^* once to extract a witness w for x with probability at least p negl.

- **Q.4a** Transform P^* into an algorithm P' who either aborts or makes a valid π . It returns π with probability p, and a complexity similar to P^* .
- **Q.4b** Construct an extractor E on the previous P' such that by observing only one execution of P' with all queries to G and H, either P' aborts, or E finds a witness for x, or E aborts. But the probability that E aborts is bounded by $n_G n_H m t N^{-1} + n_H m^{-t}$, where n_G is the number of queries to G, n_H is the number of queries to H, and N is the size of the range of G.

Hint: say that a query q to H is good if it can be parsed in the form

$$q = x, (a_i, (e_{i,j}, h_{i,j})_{j=1,\dots,m})_{i=1,\dots,m}$$

Consider an extractor which aborts if any fresh query to G returns a value $h_{i,j}$ which is included in a previous good query q to H. Define another abort condition and extract a witness in remaining cases.