# Advanced Cryptography - Final Exam 

Serge Vaudenay

26.6.2018

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade


## 1 Ciphertext Collision in Semantically Secure Cryptosystems

We consider a public-key cryptosystem (Gen, $\mathcal{M}$, Enc, Dec). We assume perfect correctness, i.e. for all $s$ and all $x \in \mathcal{M}$, if $\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$ then

$$
\operatorname{Pr}\left[\operatorname{Dec}_{K_{s}}\left(\operatorname{Enc}_{K_{p}}(x)\right)=x\right]=1
$$

Given a probabilistic polynomial-time adversary $\mathcal{A}$, we consider the following game:
Game $\Gamma_{\mathcal{A}}(s)$ :
1: $\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$
2: $X \leftarrow \mathcal{A}\left(K_{p}\right)$
3: $Y_{0} \leftarrow \operatorname{Enc}_{K_{p}}(X)$
4: $Y_{1} \leftarrow \operatorname{Enc}_{K_{p}}(X)$
5: return $1_{Y_{0}=Y_{1}}$
Q. 1 Prove that if the cryptosystem is IND-CPA secure, then $\operatorname{Pr}\left[\Gamma_{\mathcal{A}}(s) \rightarrow 1\right]$ is negligible. Hint: construct an IND-CPA adversary with advantage related to $\operatorname{Pr}\left[\Gamma_{\mathcal{A}}(s) \rightarrow 1\right]$.

## 2 Non-Malleability in Adaptive Security

We consider a public-key cryptosystem (Gen, M, Enc, Dec). We assume perfect correctness, i.e. for all $s$ and all $x \in \mathcal{M}$, if $\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$ then

$$
\operatorname{Pr}\left[\operatorname{Dec}_{K_{s}}\left(\operatorname{Enc}_{K_{p}}(x)\right)=x\right]=1
$$

Given an adversary in two parts $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, a bit $b \in\{0,1\}$, and the security parameter $s$, we define the IND-CCA game as follows:

Game IND-CCA ${ }_{\mathcal{A}}^{b}(s)$

$$
\begin{aligned}
& \left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right) \\
& \left(X_{0}, X_{1}, \sigma\right) \leftarrow \mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \quad \triangleright \sigma \text { is a "state" for } \mathcal{A}_{1} \text { to transmit data to } \mathcal{A}_{2} \\
& Y \leftarrow \operatorname{Enc}_{K_{p}}\left(X_{b}\right) \\
& b^{\prime} \leftarrow \mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \\
& \text { return } b^{\prime}
\end{aligned}
$$

where the oracles $\mathcal{O}_{1}$ and $\mathcal{O}_{2}$ are defined as follows:
Oracle $\mathcal{O}_{1}(y)$ :
1: return $\operatorname{Dec}_{K_{s}}(y)$
Oracle $\mathcal{O}_{2}(y)$ :
if $y=Y$ then
abort the game
end if
return $\operatorname{Dec}_{K_{s}}(y)$
We define the advantage

$$
\operatorname{Adv}_{\mathcal{A}}^{\operatorname{IND}-\operatorname{CCA}}(s)=\operatorname{Pr}\left[\operatorname{IND}-\text { CCA }_{\mathcal{A}}^{1}(s) \rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{IND}-\text { CCA }_{\mathcal{A}}^{0}(s) \rightarrow 1\right]
$$

We say that the cryptosystem is IND-CCA secure if for all probabilistic polynomial time (PPT) adversary $\mathcal{A}, \operatorname{Adv}_{\mathcal{A}}{ }^{\text {IND-CCA }}(s)$ is negligible.
Q. 1 The definition of IND-CCA security which was given in the course (Def.5.5 on p.5556 in the lecture notes, or slide p.404) was based on an interactive game between an adversary and a challenger. Prove that the two styles of definition for IND-CCA security are equivalent. (Carefully construct $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ from an interactive adversary and an interactive adversary from $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$.)
Q. 2 Let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be an IND-CCA adversary. We define another IND-CCA adversary as follows:

Algorithm $\mathcal{B}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right)$
1: simulate $\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \rightarrow\left(X_{0}, X_{1}, \sigma\right)$
2: if $X_{0}=X_{1}$ then
3: $\quad$ set $\sigma^{\prime} \leftarrow(\sigma, 1)$
4: $\quad$ pick an arbitrary $X$ such that $X \neq X_{1}$

```
        return \(\left(X, X_{1}, \sigma^{\prime}\right)\)
else
        set \(\sigma^{\prime} \leftarrow(\sigma, 0)\)
        return \(\left(X_{0}, X_{1}, \sigma^{\prime}\right)\)
    end if
Algorithm \(\mathcal{B}_{2}^{\mathcal{O}_{2}(\cdot)}\left(\sigma^{\prime}, Y\right)\)
10: parse \(\sigma^{\prime}=(\sigma, c)\)
11: if \(c=1\) then
        return 0
    else
        simulate \(\mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \rightarrow b^{\prime}\)
        return \(b^{\prime}\)
    end if
```

Prove that

$$
\operatorname{Adv}_{\mathcal{A}}^{\text {IND-CCA }}(s)=\operatorname{Adv}_{\mathcal{B}}^{\text {IND-CCA }}(s)
$$

Deduce that we can always assume $X_{0} \neq X_{1}$ in an IND-CCA adversary.

We now define the NM-CCA game (for non-malleability) as follows:
Game NM-CCA ${ }_{\mathcal{A}}^{b}(s)$

```
    \(\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)\)
    \((M, \sigma) \leftarrow \mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \quad \triangleright \sigma\) is a "state" which allows \(\mathcal{A}_{1}\) to transmit data to \(\mathcal{A}_{2}\)
    \(X_{0} \leftarrow M \quad \triangleright M\) is a sampling algorithm defined by \(\mathcal{A}_{1}\)
    \(X_{1} \leftarrow M \quad \triangleright\) we sample two independent plaintexts using \(M\)
    \(Y \leftarrow \operatorname{Enc}_{K_{p}}\left(X_{1}\right)\)
    \(\left(R, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}\right) \leftarrow \mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \quad \triangleright R\) is a poly. algo. returning a boolean
    \(X_{i}^{\prime} \leftarrow \operatorname{Dec}_{K_{s}}\left(Y_{i}^{\prime}\right), i=1, \ldots, n\)
    if \(Y \notin\left\{Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}\right\}\) and \(\perp \notin\left\{X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right\}\) and \(R\left(X_{b}, X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)\) then
        return 1
    else
        return 0
    end if
```

We use the same oracles $\mathcal{O}_{1}$ and $\mathcal{O}_{2}$ as for IND-CCA. We define

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{NM}-\mathrm{CCA}}(s)=\operatorname{Pr}\left[\mathrm{NM}-\mathrm{CCA}_{\mathcal{A}}^{1}(s) \rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{NM}-\mathrm{CCA}_{\mathcal{A}}^{0}(s) \rightarrow 1\right]
$$

We say that the cryptosystem is NM-CCA secure if for all probabilistic polynomial time (PPT) adversary $\mathcal{A}, \operatorname{Adv}_{\mathcal{A}}^{\mathrm{NM}-\mathrm{CCA}}(s)$ is negligible.

The goal of this exercise is to show the equivalence between NM-CCA security and IND-CCA security.
Q. 3 We assume that $\mathcal{M}$ has a group structure (additively denoted), with at least two different elements 0 and 1, 0 being neutral. Assume that there is a polynomial algorithm Inc such that for all $s$,

$$
\operatorname{Pr}\left[\operatorname{Dec}_{K_{s}}\left(\operatorname{Inc}_{K_{p}}\left(\operatorname{Enc}_{K_{p}}(X)\right)\right)=X+1\right]=1
$$

for $\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$. By constructing an adversary $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, prove that the cryptosystem is not NM-CCA secure.
(The precision of the proof is important.)
HINT: use $M$ sampling in a set of two different plaintexts and $R$ defined by $R\left(X, X^{\prime}\right)=$ $1_{X^{\prime}=X+1}$.
Q. 4 Given an NM-CCA adversary $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, we construct an IND-CCA adversary $\mathcal{B}=$ $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ as follows:

Algorithm $\mathcal{B}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right)$
simulate $\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \rightarrow(M, \sigma)$
sample $z_{0} \leftarrow M$
sample $z_{1} \leftarrow M$
set $\sigma^{\prime} \leftarrow\left(z_{0}, z_{1}, \sigma\right)$
return $\left(z_{0}, z_{1}, \sigma^{\prime}\right)$
Algorithm $\mathcal{B}_{2}^{\mathcal{O}_{2}(\cdot)}\left(\sigma^{\prime}, Y\right)$
6: parse $\sigma^{\prime}=\left(z_{0}, z_{1}, \sigma\right)$
simulate $\mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \rightarrow\left(R, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}\right)$
for $i=1, \ldots, n$ do if $Y=Y_{i}^{\prime}$ then return 0 $X_{i}^{\prime} \leftarrow \mathcal{O}_{2}\left(Y_{i}^{\prime}\right)$ if $X_{i}^{\prime}=\perp$ then return 0
end for
compute $b^{\prime} \leftarrow R\left(z_{1}, X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$
return $b^{\prime}$
Prove that

$$
\operatorname{Adv}_{\mathcal{B}}^{\text {IND-CCA }}(s)=\operatorname{Adv}_{\mathcal{A}}^{\mathrm{NM}-\mathrm{CCA}}(s)
$$

Deduce that IND-CCA security implies NM-CCA security.
Q. 5 We assume that $\mathcal{M}$ has at least four elements.

Given an IND-CCA adversary $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, we construct an NM-CCA adversary $\mathcal{B}=$ $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ as follows:

Algorithm $\mathcal{B}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right)$
1: simulate $\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \rightarrow\left(z_{0}, z_{1}, \sigma\right)$
2: define $M$ sampling in $\left\{z_{0}, z_{1}\right\}$ with uniform distribution
3: set $\sigma^{\prime} \leftarrow\left(\sigma, K_{p}, z_{0}, z_{1}\right)$
4: return $\left(M, \sigma^{\prime}\right)$
Algorithm $\mathcal{B}_{2}^{\mathcal{O}_{2}(\cdot)}\left(\sigma^{\prime}, Y\right)$
5: parse $\sigma^{\prime}=\left(\sigma, K_{p}, z_{0}, z_{1}\right)$

6: take an injective function $T$ on $\mathcal{M}$ such that $T\left(z_{0}\right) \notin\left\{z_{0}, z_{1}\right\}$ and $T\left(z_{1}\right) \notin$ $\left\{z_{0}, z_{1}\right\}$
7: simulate $\mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \rightarrow b^{\prime}$
8: $Y^{\prime} \leftarrow \operatorname{Enc}_{K_{p}}\left(T\left(z_{b^{\prime}}\right)\right)$
9: define $R\left(X, X^{\prime}\right)=1_{T(X)=X^{\prime}}$
10: return $\left(R, Y^{\prime}\right)$
Prove that

$$
\operatorname{Adv}_{\mathcal{B}}^{\mathrm{NM}-\mathrm{CCA}}(s)=\frac{1}{2} \operatorname{Adv}_{\mathcal{A}}^{\text {IND-CCA }}(s)
$$

Deduce that NM-CCA security implies IND-CCA security.
$\operatorname{HINT}_{1}$ : assume without loss of generality that $z_{0} \neq z_{1}$
$\mathrm{HINT}_{2}$ : compute $\operatorname{Pr}\left[X_{0}=z_{b^{\prime}}\right], \operatorname{Pr}\left[X_{1}=z_{b^{\prime}} \mid X_{1}=z_{1}\right]$, and $\operatorname{Pr}\left[X_{1}=z_{b^{\prime}} \mid X_{1}=z_{0}\right]$.

## 3 Unruh Transform from $\Sigma$ to NIZK

We consider a $\Sigma$ protocol $(P, V)$ for a relation $R$. We let $E$ be the set of challenges. Given some parameters $t$ and $m \geq 2$, we define the following non-interactive zero-knowledge proof (NIZK), with input ( $x, w$ ) such that $R(x, w)$ holds:

```
Algorithm \(\operatorname{Proof}(x, w)\) :
    for \(i=1\) to \(t\) do
        pick a sequence of fresh coins \(\rho_{i}\)
        set \(a_{i} \leftarrow P\left(x, w ; \rho_{i}\right)\)
        for \(j=1\) to \(m\) do
            pick \(e_{i, j} \in E-\left\{e_{i, 1}, \ldots, e_{i, j-1}\right\}\) at random
            set \(z_{i, j} \leftarrow P\left(x, w, e_{i, j} ; \rho_{i}\right)\)
            set \(h_{i, j} \leftarrow G\left(z_{i, j}\right)\)
        end for
    end for
    set \(h \leftarrow H\left(x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}\right)\)
    set \(\left(J_{1}, \ldots, J_{t}\right) \leftarrow h\)
    set \(z_{i}=z_{i, J_{i}}\) for \(i=1, \ldots, t\)
    set \(\pi=\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}, z_{i}\right)_{i=1, \ldots, t}\)
    return \(\pi\)
```

This algorithm uses two random oracles $G$ and $H$. Oracle $H$ is assumed to return a $t$ tuple of integers between 1 and $m$. We use the following verification algorithm (with some missing step):

## Algorithm Verify $(x, \pi)$ :

: parse $\pi=\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}, z_{i}\right)_{i=1, \ldots, t}$
set $h \leftarrow H\left(x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}\right)$
$\operatorname{set}\left(J_{1}, \ldots, J_{t}\right) \leftarrow h$
verify ...
verify $V\left(x, a_{i}, e_{i, J_{i}}, z_{i}\right)$ for $i=1, \ldots, t$
verify $h_{i, J_{i}}=G\left(z_{i}\right)$ for $i=1, \ldots, t$
return 1 if all verifications passed
Q. 1 By taking the verification with the missing step, give an algorithm to forge a proof given $x$ but without the knowledge of $w$.
Which step should be added to have a sound proof?
Q. 2 With the new verification step from the last question, given an algorithm with complexity $\mathcal{O}\left(m^{t}\right)$ to forge a valid $\pi$ from $x$ but without $w$.
Q. 3 Construct a simulator in the random oracle model to show that the protocol is noninteractive zero-knowledge.
Q. 4 Let $P^{*}(x)$ be an algorithm taking $x$ as input, interacting with $G$ and $H$, and forging a valid $\pi$ with probability $p$. Use the next questions to prove that there is an extractor who can run $P^{*}$ once to extract a witness $w$ for $x$ with probability at least $p-$ negl.
Q.4a Transform $P^{*}$ into an algorithm $P^{\prime}$ who either aborts or makes a valid $\pi$. It returns $\pi$ with probability $p$, and a complexity similar to $P^{*}$.
Q.4b Construct an extractor $E$ on the previous $P^{\prime}$ such that by observing only one execution of $P^{\prime}$ with all queries to $G$ and $H$, either $P^{\prime}$ aborts, or $E$ finds a witness for $x$, or $E$ aborts. But the probability that $E$ aborts is bounded by $n_{G} n_{H} m t N^{-1}+n_{H} m^{-t}$, where $n_{G}$ is the number of queries to $G, n_{H}$ is the number of queries to $H$, and $N$ is the size of the range of $G$.
Hint: say that a query $q$ to $H$ is good if it can be parsed in the form

$$
q=x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}
$$

Consider an extractor which aborts if any fresh query to $G$ returns a value $h_{i, j}$ which is included in a previous good query $q$ to $H$. Define another abort condition and extract a witness in remaining cases.

