Advanced Cryptography - Final Exam Solution

Serge Vaudenay
26.6.2018

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Ciphertext Collision in Semantically Secure Cryptosystems

We consider a public-key cryptosystem (Gen, M, Enc, Dec). We assume perfect correctness, i.e. for all s and all $x \in \mathcal{M}$, if $\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$ then

$$
\operatorname{Pr}\left[\operatorname{Dec}_{K_{s}}\left(\operatorname{Enc}_{K_{p}}(x)\right)=x\right]=1
$$

Given a probabilistic polynomial-time adversary \mathcal{A}, we consider the following game:
Game $\Gamma_{\mathcal{A}}(s)$:
1: $\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$
2: $X \leftarrow \mathcal{A}\left(K_{p}\right)$
3: $Y_{0} \leftarrow \operatorname{Enc}_{K_{p}}(X)$
4: $Y_{1} \leftarrow \operatorname{Enc}_{K_{p}}(X)$
5: return $1_{Y_{0}=Y_{1}}$
Q. 1 Prove that if the cryptosystem is IND-CPA secure, then $\operatorname{Pr}\left[\Gamma_{\mathcal{A}}(s) \rightarrow 1\right]$ is negligible. Hint: construct an IND-CPA adversary with advantage related to $\operatorname{Pr}\left[\Gamma_{\mathcal{A}}(s) \rightarrow 1\right]$.

We define an IND-CPA adversary as follows:
Algorithm $\mathcal{B}(s)$:
1: receive K_{p}
2: run $X_{1} \leftarrow \mathcal{A}\left(K_{p}\right)$
3: pick $X_{0} \in \mathcal{M}$ such that $X_{0} \neq X_{1}$
4: send X_{0}, X_{1}, receive Y
5: $Y^{\prime} \leftarrow \operatorname{Enc}_{K_{p}}\left(X_{1}\right)$
6: return $1_{Y=Y^{\prime}}$
If Y is the encryption of X_{1}, the IND-CPA game outputs 1 with probability $\operatorname{Pr}\left[\Gamma_{\mathcal{A}}(s) \rightarrow 1\right]$. If Y is the encryption of X_{0}, we cannot have $Y=Y^{\prime}$, so the game outputs 1 with probability zero. Hence, the advantage of \mathcal{B} is exactly $\operatorname{Pr}\left[\Gamma_{\mathcal{A}}(s) \rightarrow 1\right]$. Due to IND-CPA security, this is negligible.

2 Non-Malleability in Adaptive Security

> This exercise is inspired from Bellare-Desai-Pointcheval-Rogaway, Relations Among Notions of Security for Public-Key Encryption Schemes, CRYPTO 1998, LNCS vol. 1462, Springer.

We consider a public-key cryptosystem (Gen, M Enc, Dec). We assume perfect correctness, i.e. for all s and all $x \in \mathcal{M}$, if $\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$ then

$$
\operatorname{Pr}\left[\operatorname{Dec}_{K_{s}}\left(\operatorname{Enc}_{K_{p}}(x)\right)=x\right]=1
$$

Given an adversary in two parts $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, a bit $b \in\{0,1\}$, and the security parameter s, we define the IND-CCA game as follows:

Game IND-CCA ${ }_{\mathcal{A}}^{b}(s)$
$\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$
$\left(X_{0}, X_{1}, \sigma\right) \leftarrow \mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \quad \triangleright \sigma$ is a "state" for \mathcal{A}_{1} to transmit data to \mathcal{A}_{2}
$Y \leftarrow \operatorname{Enc}_{K_{p}}\left(X_{b}\right)$
$b^{\prime} \leftarrow \mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y)$
return b^{\prime}
where the oracles \mathcal{O}_{1} and \mathcal{O}_{2} are defined as follows:
Oracle $\mathcal{O}_{1}(y)$:
1: return $\operatorname{Dec}_{K_{s}}(y)$
Oracle $\mathcal{O}_{2}(y)$:
if $y=Y$ then
abort the game
end if
return $\operatorname{Dec}_{K_{s}}(y)$
We define the advantage

$$
\operatorname{Adv}_{\mathcal{A}}^{\operatorname{IND}-\mathrm{CCA}}(s)=\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{1}(s) \rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{0}(s) \rightarrow 1\right]
$$

We say that the cryptosystem is IND-CCA secure if for all probabilistic polynomial time (PPT) adversary $\mathcal{A}, \operatorname{Adv}_{\mathcal{A}}^{\text {IND-CCA }}(s)$ is negligible.
Q. 1 The definition of IND-CCA security which was given in the course (Def.5.5 on p.5556 in the lecture notes, or slide p.404) was based on an interactive game between an adversary and a challenger. Prove that the two styles of definition for IND-CCA security are equivalent. (Carefully construct $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ from an interactive adversary and an interactive adversary from $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$.)

In the interactive-style definition, the interactive adversary \mathcal{A}^{\prime} receives a public key, makes decryption queries, submit two plaintexts, get a ciphertext, makes new decryption queries, and produces a bit. We define \mathcal{A}^{\prime} from $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ as follows:

Algorithm \mathcal{A}^{\prime}

1: wait until K_{p} is received
2: simulate $\mathcal{A}_{1}\left(K_{p}\right)$; any query to \mathcal{O}_{1} by this simulation is done by making decryption queries to the challenger
3: the simulation ends by producing $\left(X_{0}, X_{1}, \sigma\right)$
4: submit $\left(X_{0}, X_{1}\right)$ to the challenger and get Y in return
5: simulate $\mathcal{A}_{2}(\sigma, Y)$; any query to \mathcal{O}_{2} by this simulation is done by making decryption queries to the challenger
6: the simulation ends by producing b^{\prime}
return b^{\prime}
Clearly, the IND-CCA game with $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ is perfectly simulated by the interactive game with \mathcal{A}^{\prime}. Hence, the advantages match.
Conversely, given an interactive adversary \mathcal{A}^{\prime}, we define $\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ as follows:
Algorithm $\mathcal{A}_{1}\left(K_{p}\right)$
1: simulate \mathcal{A}^{\prime} who starts by receiving K_{p}; any decryption query defines a query to \mathcal{O}_{1} and the simulated answer to query is made from the answer to the oracle
2: at some point, \mathcal{A}^{\prime} issues $\left(X_{0}, X_{1}\right)$, we let σ be the state of the simulation
3: return $\left(X_{0}, X_{1}, \sigma\right)$
Algorithm $\mathcal{A}_{2}(\sigma, Y)$
4: resume the simulation of \mathcal{A}^{\prime} from state σ, by starting from the reception of Y; any decryption query defines a query to \mathcal{O}_{2} and the simulated answer to query is made from the answer to the oracle
5: the simulation ends by releasing a bit b^{\prime}
6: return b^{\prime}
Again, the simulation is perfect. Hence, the advantages match.
Q. 2 Let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be an IND-CCA adversary. We define another IND-CCA adversary as follows:

```
Algorithm \(\mathcal{B}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right)\)
    simulate \(\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \rightarrow\left(X_{0}, X_{1}, \sigma\right)\)
    if \(X_{0}=X_{1}\) then
        set \(\sigma^{\prime} \leftarrow(\sigma, 1)\)
        pick an arbitrary \(X\) such that \(X \neq X_{1}\)
        return \(\left(X, X_{1}, \sigma^{\prime}\right)\)
    else
        set \(\sigma^{\prime} \leftarrow(\sigma, 0)\)
        return \(\left(X_{0}, X_{1}, \sigma^{\prime}\right)\)
```


9: end if

Algorithm $\mathcal{B}_{2}^{\mathcal{O}_{2}(\cdot)}\left(\sigma^{\prime}, Y\right)$
10: parse $\sigma^{\prime}=(\sigma, c)$
11: if $c=1$ then
12: return 0
13: else
14: \quad simulate $\mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \rightarrow b^{\prime}$
15: \quad return b^{\prime}
16: end if
Prove that

$$
\operatorname{Adv}_{\mathcal{A}}^{\text {IND-CCA }}(s)=\operatorname{Adv}_{\mathcal{B}}^{\text {IND-CCA }}(s)
$$

Deduce that we can always assume $X_{0} \neq X_{1}$ in an IND-CCA adversary.
Let E be the event that $X_{0}=X_{1}$ with adversary \mathcal{A}. We have

$$
\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{1}(s) \rightarrow 1 \mid E\right]=\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{0}(s) \rightarrow 1 \mid E\right]
$$

thus

$$
\operatorname{Adv}_{\mathcal{A}}^{\operatorname{IND}-\mathrm{CCA}}(s)=\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{1}(s) \rightarrow 1, \neg E\right]-\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{0}(s) \rightarrow 1, \neg E\right]
$$

We have

$$
\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{B}}^{b}(s) \rightarrow 1\right]=\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{b}(s) \rightarrow 1, \neg E\right]
$$

hence

$$
\operatorname{Adv}_{\mathcal{A}}^{\text {IND }-C C A}(s)=\operatorname{Adv}_{\mathcal{B}}^{\text {IND-CCA }}(s)
$$

We now define the NM-CCA game (for non-malleability) as follows:

Game NM-CCA ${ }_{\mathcal{A}}^{b}(s)$

$\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$
$(M, \sigma) \leftarrow \mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \quad \triangleright \sigma$ is a "state" which allows \mathcal{A}_{1} to transmit data to \mathcal{A}_{2}
3: $X_{0} \leftarrow M$
$\triangleright M$ is a sampling algorithm defined by \mathcal{A}_{1}
4: $X_{1} \leftarrow M \quad \triangleright$ we sample two independent plaintexts using M
5: $Y \leftarrow \operatorname{Enc}_{K_{p}}\left(X_{1}\right)$
6: $\left(R, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}\right) \leftarrow \mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \quad \triangleright R$ is a poly. algo. returning a boolean
7: $X_{i}^{\prime} \leftarrow \operatorname{Dec}_{K_{s}}\left(Y_{i}^{\prime}\right), i=1, \ldots, n$
8: if $Y \notin\left\{Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}\right\}$ and $\perp \notin\left\{X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right\}$ and $R\left(X_{b}, X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$ then

```
        return 1
else
    return 0
end if
```

We use the same oracles \mathcal{O}_{1} and \mathcal{O}_{2} as for IND-CCA. We define

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{NM}-\mathrm{CCA}}(s)=\operatorname{Pr}\left[\mathrm{NM}-\mathrm{CCA}_{\mathcal{A}}^{1}(s) \rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{NM}-\mathrm{CCA}_{\mathcal{A}}^{0}(s) \rightarrow 1\right]
$$

We say that the cryptosystem is NM-CCA secure if for all probabilistic polynomial time (PPT) adversary $\mathcal{A}, \operatorname{Adv}_{\mathcal{A}}^{\mathrm{NM}-C C A}(s)$ is negligible.

The goal of this exercise is to show the equivalence between NM-CCA security and IND-CCA security.
Q. 3 We assume that \mathcal{M} has a group structure (additively denoted), with at least two different elements 0 and 1, 0 being neutral. Assume that there is a polynomial algorithm Inc such that for all s,

$$
\operatorname{Pr}\left[\operatorname{Dec}_{K_{s}}\left(\operatorname{lnc}_{K_{p}}\left(\operatorname{Enc}_{K_{p}}(X)\right)\right)=X+1\right]=1
$$

for $\left(K_{p}, K_{s}\right) \leftarrow \operatorname{Gen}\left(1^{s}\right)$. By constructing an adversary $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, prove that the cryptosystem is not NM-CCA secure.
(The precision of the proof is important.)
HINT: use M sampling in a set of two different plaintexts and R defined by $R\left(X, X^{\prime}\right)=$ $1_{X^{\prime}=X+1}$.

Algorithm $\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right)$

1: pick $z, z^{\prime} \in \mathcal{M}$ such that $z \neq z^{\prime}$
2: define M sampling in $\left\{z, z^{\prime}\right\}$ with uniform distribution
3: return $\left(M, K_{p}\right)$
\triangleright we set $\sigma=K_{p}$
Algorithm $\mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}\left(K_{p}, Y\right)$
4: $Y^{\prime} \leftarrow \operatorname{lnc}_{K_{p}}(Y)$
5: define R by $R\left(X, X^{\prime}\right)=1_{X^{\prime}=X+1}$
6: return $\left(R, Y^{\prime}\right)$
Since $0 \neq 1$ in \mathcal{M}, we have that $\operatorname{Dec}_{K_{s}}\left(Y^{\prime}\right)=\operatorname{Dec}_{K_{s}}(Y)+1 \neq \operatorname{Dec}_{K_{s}}(Y)$ so $Y^{\prime} \neq Y$. We further have $\operatorname{Dec}_{K_{s}}\left(Y^{\prime}\right) \neq \perp$. So, the outcome of the game is

$$
\mathrm{NM}-\mathrm{CCA}_{\mathcal{A}}^{b}(s)=R\left(X_{b}, \operatorname{Dec}_{K_{s}}\left(Y^{\prime}\right)\right)=R\left(X_{b}, X_{1}+1\right)=1_{X_{1}+1=X_{b}+1}=1_{X_{1}=X_{b}}
$$

thanks to the group property.
In the NM-CCA game, if M picks two identical plaintexts $X_{0}=X_{1}$, then the outcome of the game is always 1 no matter what is b. If $X_{0} \neq X_{1}$, the outcome of the game is $1_{b=1}$. Hence

$$
\operatorname{Pr}\left[\mathrm{NM}_{-\mathrm{CCA}_{\mathcal{A}}^{1}}^{1}(s) \rightarrow 1\right]=1
$$

and

$$
\operatorname{Pr}\left[\mathrm{NM}_{\mathrm{CCA}}^{\mathcal{A}} 00(s) \rightarrow 1\right]=\frac{1}{2}
$$

Therefore, we have

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{NM}-\mathrm{CCA}}(s)=\frac{1}{2}
$$

Q. 4 Given an NM-CCA adversary $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, we construct an IND-CCA adversary $\mathcal{B}=$ $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ as follows:

```
Algorithm \(\mathcal{B}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right)\)
    1: simulate \(\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \rightarrow(M, \sigma)\)
    sample \(z_{0} \leftarrow M\)
    3: sample \(z_{1} \leftarrow M\)
    4: set \(\sigma^{\prime} \leftarrow\left(z_{0}, z_{1}, \sigma\right)\)
    5: return \(\left(z_{0}, z_{1}, \sigma^{\prime}\right)\)
Algorithm \(\mathcal{B}_{2}^{\mathcal{O}_{2}(\cdot)}\left(\sigma^{\prime}, Y\right)\)
    6: parse \(\sigma^{\prime}=\left(z_{0}, z_{1}, \sigma\right)\)
    7: simulate \(\mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \rightarrow\left(R, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}\right)\)
    for \(i=1, \ldots, n\) do
    9: \(\quad\) if \(Y=Y_{i}^{\prime}\) then return 0
    10: \(\quad X_{i}^{\prime} \leftarrow \mathcal{O}_{2}\left(Y_{i}^{\prime}\right)\)
```

11: \quad if $X_{i}^{\prime}=\perp$ then return 0
12: end for
13: compute $b^{\prime} \leftarrow R\left(z_{1}, X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$
14: return b^{\prime}
Prove that

$$
\operatorname{Adv}_{\mathcal{B}}^{\text {IND-CCA }}(s)=\operatorname{Adv}_{\mathcal{A}}^{\mathrm{NM}-\operatorname{CCA}}(s)
$$

Deduce that IND-CCA security implies NM-CCA security.
We first observe that since we check that $Y \neq Y_{i}^{\prime}$, there is no problem to query $\mathcal{O}_{2}\left(Y_{i}^{\prime}\right)$. By denoting $X_{1}=z_{b}$ and $X_{0}=z_{1-b}$, we can see that the IND-CCA ${ }_{\mathcal{B}}^{b}$ game is a perfect simulation of the $\mathrm{NM}_{\mathrm{C}}-\mathrm{CA}_{\mathcal{A}}^{b}$ game (with some steps moved from the core game or adversary and decryption replaced by \mathcal{O}_{2}). Hence

$$
\text { IND-CCA } \mathcal{B}_{\mathcal{B}}^{b}=\mathrm{NM}-\mathrm{CCA}_{\mathcal{A}}^{b}
$$

thus

$$
\operatorname{Adv}_{\mathcal{B}}^{\text {IND }-\mathrm{CCA}}(s)=\operatorname{Adv}_{\mathcal{A}}^{\mathrm{NM}-\operatorname{CCA}}(s)
$$

Q. 5 We assume that \mathcal{M} has at least four elements.

Given an IND-CCA adversary $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, we construct an NM-CCA adversary $\mathcal{B}=$ $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ as follows:

Algorithm $\mathcal{B}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right)$
1: simulate $\mathcal{A}_{1}^{\mathcal{O}_{1}(\cdot)}\left(K_{p}\right) \rightarrow\left(z_{0}, z_{1}, \sigma\right)$
2: define M sampling in $\left\{z_{0}, z_{1}\right\}$ with uniform distribution
3: set $\sigma^{\prime} \leftarrow\left(\sigma, K_{p}, z_{0}, z_{1}\right)$
4: return $\left(M, \sigma^{\prime}\right)$
Algorithm $\mathcal{B}_{2}^{\mathcal{O}_{2}(\cdot)}\left(\sigma^{\prime}, Y\right)$
5: parse $\sigma^{\prime}=\left(\sigma, K_{p}, z_{0}, z_{1}\right)$
6: take an injective function T on \mathcal{M} such that $T\left(z_{0}\right) \notin\left\{z_{0}, z_{1}\right\}$ and $T\left(z_{1}\right) \notin$ $\left\{z_{0}, z_{1}\right\}$
7: simulate $\mathcal{A}_{2}^{\mathcal{O}_{2}(\cdot)}(\sigma, Y) \rightarrow b^{\prime}$
8: $Y^{\prime} \leftarrow \operatorname{Enc}_{K_{p}}\left(T\left(z_{b^{\prime}}\right)\right)$
9: define $R\left(X, X^{\prime}\right)=1_{T(X)=X^{\prime}}$
10: return $\left(R, Y^{\prime}\right)$
Prove that

$$
\operatorname{Adv}_{\mathcal{B}}^{\mathrm{NM}-\mathrm{CCA}}(s)=\frac{1}{2} \operatorname{Adv}_{\mathcal{A}}^{\text {IND-CCA }}(s)
$$

Deduce that NM-CCA security implies IND-CCA security.
HINT_{1} : assume without loss of generality that $z_{0} \neq z_{1}$
HINT_{2} : compute $\operatorname{Pr}\left[X_{0}=z_{b^{\prime}}\right], \operatorname{Pr}\left[X_{1}=z_{b^{\prime}} \mid X_{1}=z_{1}\right]$, and $\operatorname{Pr}\left[X_{1}=z_{b^{\prime}} \mid X_{1}=z_{0}\right]$.

Using Q.2, we can always transform the adversary to obtain $z_{0} \neq z_{1}$. So, we assume $z_{0} \neq z_{1}$ without loss of generality.
Due to correctness, we note that no decryption abort, so the outcome is
$\operatorname{NM}-\operatorname{CCA}_{\mathcal{B}}^{b}(s)=1_{R\left(X_{b}, \operatorname{Dec}_{K_{s}}\left(Y^{\prime}\right)\right)=1, Y \neq Y^{\prime}}=1_{R\left(X_{b}, T\left(z_{b^{\prime}}\right)\right)=1, Y \neq Y^{\prime}}=1_{T\left(X_{b}\right)=T\left(z_{b^{\prime}}\right), Y \neq Y^{\prime}}$
where Y is an encryption of X_{1} and Y^{\prime} is an encryption of $T\left(z_{b^{\prime}}\right)$. Given the assumptions on T, we always have $X_{1} \neq T\left(z_{b^{\prime}}\right)$. Due to the correctness of decryption, we deduce that we always have $Y \neq Y^{\prime}$. Due to injectivity, we deduce

$$
\operatorname{Pr}\left[\mathrm{NM}^{-C C A} \mathcal{B}^{b}(s)=1\right]=\operatorname{Pr}\left[X_{b}=z_{b^{\prime}}\right]
$$

Hence,

$$
\operatorname{Adv}_{\mathcal{B}}^{\mathrm{NM}-\operatorname{CCA}}(s)=\operatorname{Pr}\left[X_{1}=z_{b^{\prime}}\right]-\operatorname{Pr}\left[X_{0}=z_{b^{\prime}}\right]
$$

We have

$$
\operatorname{Adv}_{\mathcal{B}}^{\mathrm{NM}-\mathrm{CCA}}(s)=\operatorname{Pr}\left[X_{1}=z_{b^{\prime}}\right]-\operatorname{Pr}\left[X_{0}=z_{b^{\prime}}\right]
$$

Since b^{\prime} only depends on X_{1}, X_{0} is independent from $z_{b^{\prime}}$ so $\operatorname{Pr}\left[X_{0}=z_{b^{\prime}}\right]=\frac{1}{2}$ (because $z_{0} \neq z_{1}$). Similarly, we have $\operatorname{Pr}\left[X_{1}=z_{b^{\prime}} \mid X_{1}=z_{c}\right]=\operatorname{Pr}\left[b^{\prime}=c \mid X_{1}=\right.$ $\left.z_{c}\right]$ for $c \in\{0,1\}$. Thus, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}=z_{b^{\prime}} \mid X_{1}=z_{1}\right]=\operatorname{Pr}\left[\operatorname{IND}-\operatorname{CCA}_{\mathcal{A}}^{1}(s)=1\right] \\
& \operatorname{Pr}\left[X_{1}=z_{b^{\prime}} \mid X_{1}=z_{0}\right]=1-\operatorname{Pr}\left[\operatorname{IND}-\operatorname{CCA}_{\mathcal{A}}^{0}(s)=1\right]
\end{aligned}
$$

Since $\operatorname{Pr}\left[X_{1}=z_{0}\right]=\operatorname{Pr}\left[X_{1}=z_{1}\right]=\frac{1}{2}$,

$$
\operatorname{Pr}\left[X_{1}=z_{b^{\prime}}\right]=\frac{\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{1}(s)=1\right]+1-\operatorname{Pr}\left[\operatorname{IND}-\operatorname{CCA}_{\mathcal{A}}^{0}(s)=1\right]}{2}
$$

Therefore

$$
\operatorname{Adv}_{\mathcal{B}}^{\mathrm{NM}-\operatorname{CCA}}(s)=\frac{1}{2}\left(\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{1}(s)=1\right]-\operatorname{Pr}\left[\operatorname{IND}-\mathrm{CCA}_{\mathcal{A}}^{0}(s)=1\right]\right)
$$

Therefore

$$
\operatorname{Adv}_{\mathcal{B}}^{\mathrm{NM}-\mathrm{CCA}}(s)=\frac{1}{2} \operatorname{Adv}_{\mathcal{A}}^{\mathrm{IND}-\mathrm{CCA}}(s)
$$

3 Unruh Transform from Σ to NIZK

This exercise is inspired from Unruh, Non-Interactive Zero-Knowledge Proofs in the Quantum Random Oracle Model, EUROCRYPT 2015, LNCS vol. 9057, Springer.

We consider a Σ protocol (P, V) for a relation R. We let E be the set of challenges. Given some parameters t and $m \geq 2$, we define the following non-interactive zero-knowledge proof (NIZK), with input (x, w) such that $R(x, w)$ holds:

```
Algorithm \(\operatorname{Proof}(x, w)\) :
    for \(i=1\) to \(t\) do
        pick a sequence of fresh coins \(\rho_{i}\)
        set \(a_{i} \leftarrow P\left(x, w ; \rho_{i}\right)\)
        for \(j=1\) to \(m\) do
            pick \(e_{i, j} \in E-\left\{e_{i, 1}, \ldots, e_{i, j-1}\right\}\) at random
            set \(z_{i, j} \leftarrow P\left(x, w, e_{i, j} ; \rho_{i}\right)\)
            set \(h_{i, j} \leftarrow G\left(z_{i, j}\right)\)
        end for
    end for
    set \(h \leftarrow H\left(x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}\right)\)
    set \(\left(J_{1}, \ldots, J_{t}\right) \leftarrow h\)
    set \(z_{i}=z_{i, J_{i}}\) for \(i=1, \ldots, t\)
    set \(\pi=\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}, z_{i}\right)_{i=1, \ldots, t}\)
    return \(\pi\)
```

This algorithm uses two random oracles G and H. Oracle H is assumed to return a t tuple of integers between 1 and m. We use the following verification algorithm (with some missing step):

Algorithm Verify (x, π) :

parse $\pi=\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}, z_{i}\right)_{i=1, \ldots, t}$
set $h \leftarrow H\left(x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}\right)$
set $\left(J_{1}, \ldots, J_{t}\right) \leftarrow h$
verify ...
verify $V\left(x, a_{i}, e_{i, J_{i}}, z_{i}\right)$ for $i=1, \ldots, t$
verify $h_{i, J_{i}}=G\left(z_{i}\right)$ for $i=1, \ldots, t$
return 1 if all verifications passed
Q. 1 By taking the verification with the missing step, give an algorithm to forge a proof given x but without the knowledge of w.
Which step should be added to have a sound proof?

```
We use the simulator of the \(\Sigma\) protocol and all \(e_{i, j}\) equal:
Algorithm Forge \((x)\) :
    1: pick \(e \in E\) at random
    2: \((a, e, z) \leftarrow \mathcal{S}(x, e)\)
    3: set \(a_{i}=a\) for \(i=1, \ldots, t\)
    4: set \(e_{i, j}=e\) for \(i=1, \ldots, t, j=1, \ldots, m\)
    5: set \(z_{i, j}=z\) for \(i=1, \ldots, t, j=1, \ldots, m\)
    6: set \(h_{i, j}=G(z)\) for \(i=1, \ldots, t, j=1, \ldots, m\)
    7: set \(h \leftarrow H\left(x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}\right)\)
    8: set \(\left(J_{1}, \ldots, J_{t}\right) \leftarrow h\)
    9: set \(z_{i}=z_{i, J_{i}}\) for \(i=1, \ldots, t\)
10: set \(\pi=\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}, z_{i}\right)_{i=1, \ldots, t}\)
11: return \(\pi\)
It is clear that the output \(\pi\) passes the verification with the missing step.
The missing step is
    1: for \(i=1\) to \(t\) do
        verify that \(e_{i, 1}, \ldots, e_{i, m}\) are pairwise different
    3: end for
```

Q. 2 With the new verification step from the last question, give an algorithm with complexity $\mathcal{O}\left(m^{t}\right)$ to forge a valid π from x but without w.

```
We try to predict the index of the challenges which will be verified and use the
simulator of the \(\Sigma\) protocol. We proceed as follows:
Algorithm Forge \((x)\) :
    repeat
        for \(i=1\) to \(t\) do
            pick \(J_{i} \in\{1, \ldots, m\}\)
            pick \(e_{i, J_{j}} \in E\) at random
            \(\left(a_{i}, e_{i, J_{i}}, z_{i}\right) \leftarrow \mathcal{S}\left(x, e_{i, J_{i}}\right)\)
            for \(j=1\) to \(m\) do
                if \(j \neq J_{i}\) then
                pick \(e_{i, j} \in E-\left\{e_{i, 1}, \ldots, e_{i, j-1}, e_{i, J_{i}}\right\}\) at random
                    set \(z_{i, j}\) at random
                set \(h_{i, j} \leftarrow G\left(z_{i, j}\right)\)
                    end if
            end for
        end for
        set \(h \leftarrow H\left(x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}\right)\)
    until \(\left(J_{1}, \ldots, J_{t}\right)=h\)
    set \(z_{i}=z_{i, J_{i}}\) for \(i=1, \ldots, t\)
    set \(\pi=\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}, z_{i}\right)_{i=1, \ldots, t}\)
    return \(\pi\)
Since \(h\) randomly picks \(J_{1}, \ldots, J_{t}\), each iteration succeeds with probability \(m^{-t}\).
Hence, we need \(\mathcal{O}\left(m^{t}\right)\) iterations until we succeed.
```

Q. 3 Construct a simulator in the random oracle model to show that the protocol is noninteractive zero-knowledge.

If finding a witness is easy, the problem is trivial: we just use the easy-to-find witness to simulate the proof as Proof.
If finding the witness is hard, the simulator works like in the previous question.
Algorithm Simulate (x):

```
    1: for \(i=1\) to \(t\) do
        pick \(J_{i} \in\{1, \ldots, m\}\)
        pick \(e_{i, J_{j}} \in E\) at random
        \(\left(a_{i}, e_{i, J_{i}}, z_{i}\right) \leftarrow \mathcal{S}\left(x, e_{i, J_{i}}\right)\)
        set \(h_{i, J_{j}} \leftarrow G\left(z_{i, J_{j}}\right) \quad \triangleright\) simulate \(G\)
        for \(j=1\) to \(m\) do
            if \(j \neq J_{i}\) then
                pick \(e_{i, j} \in E-\left\{e_{i, 1}, \ldots, e_{i, j-1}, e_{i, J_{i}}\right\}\) at random
                set \(h_{i, j}\) at random
            end if
        end for
    end for
    set \(h \leftarrow\left(J_{1}, \ldots, J_{m}\right)\)
    set \(h=H\left(x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}\right) \quad \triangleright\) simulate \(H\)
    set \(z_{i}=z_{i, J_{i}}\) for \(i=1, \ldots, t\)
    set \(\pi=\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}, z_{i}\right)_{i=1, \ldots, t}\)
    return \(\pi\)
```

We should show that a limited distinguisher receiving π and playing with the simulator of G and H cannot distinguish this π from a genuine one. For this, we should argue that it cannot find the correct $z_{i, j}$ for $j \neq J_{i}$, except with negligible probability (because he would, together with $a_{i}, e_{i, J_{i}}$, and $z_{i, J_{i}}$, be able to extract a witness with the Σ extractor, which is assumed to be hard). Without being able to query G with the right $z_{i, j}$, the value $h_{i, j}$ is free. Thus, the distinguisher cannot see if $h_{i, j}$ was randomly selected by the simulator without knowing $z_{i, j}$ or randomly selected by G.
Q. 4 Let $P^{*}(x)$ be an algorithm taking x as input, interacting with G and H, and forging a valid π with probability p. Use the next questions to prove that there is an extractor who can run P^{*} once to extract a witness w for x with probability at least p - negl.
Q.4a Transform P^{*} into an algorithm P^{\prime} who either aborts or makes a valid π. It returns π with probability p, and a complexity similar to P^{*}.

The algorithm $P^{\prime}(x)$ first runs $P^{*}(x)$ and obtain π. Then, it parses $\pi=$ $\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}, z_{i}\right)_{i=1, \ldots, t}$ and runs Verify (x, π). If verification fails, P^{\prime} aborts. Otherwise, it returns π.
Clearly, the probability of success is the same and the complexity is similar. Note that P^{\prime} always queries $H\left(x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}\right)=\left(J_{1}, \ldots, J_{t}\right)$. If also queries $G\left(z_{i}\right)=h_{i, J_{i}}$ for every i.
Q.4b Construct an extractor E on the previous P^{\prime} such that by observing only one execution of P^{\prime} with all queries to G and H, either P^{\prime} aborts, or E finds a witness for x, or E aborts. But the probability that E aborts is bounded by $n_{G} n_{H} m t N^{-1}+n_{H} m^{-t}$, where n_{G} is the number of queries to G, n_{H} is the number of queries to H, and N is the size of the range of G.
Hint: say that a query q to H is good if it can be parsed in the form

$$
q=x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}
$$

Consider an extractor which aborts if any fresh query to G returns a value $h_{i, j}$ which is included in a previous good query q to H. Define another abort condition and extract a witness in remaining cases.

We consider an execution of P^{\prime} with all its queries to G and H.
Let q be a fresh query to H by P^{\prime}. We say that q is a good fresh query if q parses into some $q=x,\left(a_{i},\left(e_{i, j}, h_{i, j}\right)_{j=1, \ldots, m}\right)_{i=1, \ldots, t}$ such that for every i, all $e_{i, j}$ are pairwise different. So, q defines a sequence of a_{i}, and arrays of $e_{i, j}$ and $h_{i, j}$.
Note that if P^{\prime} succeeds to forge a valid π, there must be a good fresh query q which matches the content of π.
If any fresh query to G after the query q to H returns one of the values $h_{i, j}$ (there are mt of them), the extractor aborts. So, the probability to abort for this case is bounded by $n_{G} n_{H} m t N^{-1}$.
For each good fresh q, we define $J_{q}(i)$ as the set of j such that $h_{i, j}$ was returned by G at some point in the past. (Note that unless the extractor aborts, there won't be any future query to G returning $h_{i, j}$.) We let $J_{q}^{\prime}(i)$ be the subset of $J_{q}(i)$ such that there exists one query $z_{i, j}$ to G which returned $h_{i, j}$ and satisfying the condition $V\left(x, a_{i}, e_{i, j}, z_{i, j}\right)$. If there is any i such that $J_{q}^{\prime}(i)$ has at least two elements, we can use the Σ extractor to get a witness for x.
Now, we consider the case where for all $i, J_{q}^{\prime}(i)$ has at most one element. When H returns $\left(J_{1}, \ldots, J_{t}\right)$ to the fresh query q, if we have that $J_{i} \in J_{q}^{\prime}(i)$ for all i, then we make the extractor abort. Clearly, the probability this happens is bounded by m^{-t}. Applying this to all queries to H, the probability to abort is bounded by nm^{-t}.
If the extractor does not abort and P^{\prime} succeeds to make a valid π, we note that there is a good query q to H made by the verification. We take the fresher query equal to q. We also note that for all i, the verification in P^{\prime} makes a query $G\left(z_{i}\right)=h_{i, J_{i}}$ for each i. So, z_{i} cannot be a fresh query and we must have $J_{i} \in J_{q}^{\prime}(i)$ for all i. Hence, either E succeeded to extract a witness or it aborted on that fresh good query.

