Advanced Cryptography - Final Exam

Serge Vaudenay

26.6.2019

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Minimal Number of Samples to Distinguish Distributions

We consider two probability distributions P_{0} and P_{1} over a set \mathcal{Z}. We denote by $d\left(P_{0}, P_{1}\right)$ the statistical distance between them, which is

$$
d\left(P_{0}, P_{1}\right)=\frac{1}{2} \sum_{z \in \mathcal{Z}}\left|P_{0}(z)-P_{1}(z)\right|
$$

We also define the Hellinger distance

$$
H\left(P_{0}, P_{1}\right)=\sqrt{1-\sum_{z \in \mathcal{Z}} \sqrt{P_{0}(z) P_{1}(z)}}
$$

This is a distance in the sense that we always have $H\left(P_{0}, P_{1}\right) \geq 0, H\left(P_{0}, P_{1}\right)=0 \Longleftrightarrow$ $P_{0}=P_{1}$, and the triangular inequality. We further define the fidelity

$$
F\left(P_{0}, P_{1}\right)=1-H\left(P_{0}, P_{1}\right)^{2}
$$

The Fuchs - van de Graaf inequalities relate d and F as follows

$$
1-F\left(P_{0}, P_{1}\right) \leq d\left(P_{0}, P_{1}\right) \leq \sqrt{1-F\left(P_{0}, P_{1}\right)^{2}}
$$

Given two distributions P and Q, we denote by $P \otimes Q$ the distribution of a pair (X, Y) of independent variables X and Y such that X follows P and Y follows Q. We also denote $P^{\otimes n}=\overbrace{P \otimes \cdots \otimes P}^{n \text { times }}$.

We are interested in distinguishing the two distributions based on a vector of n i.i.d. samples following one or the other distribution. Given a real number $t \in[0,1]$, we let n_{t} be the minimal integer such that there exists a distinguisher using n_{t} samples with advantage at least t.
Q. 1 By using an easy bound on the statistical distance, show that for all t, we have

$$
n_{t} \geq \frac{t}{d\left(P_{0}, P_{1}\right)}
$$

Q. 2 Prove that $F\left(P_{0}^{\otimes n}, P_{1}^{\otimes n}\right)=F\left(P_{0}, P_{1}\right)^{n}$.

HINT: first prove $F\left(P_{0} \otimes Q_{0}, P_{1} \otimes Q_{1}\right)=F\left(P_{0}, P_{1}\right) F\left(Q_{0}, Q_{1}\right)$.
Q. 3 By writing $D_{1 / 2}\left(P_{0} \| P_{1}\right)=-2 \cdot \log _{2} F\left(P_{0}, P_{1}\right)$, prove that

$$
n_{t} \geq \frac{-\log _{2}\left(1-t^{2}\right)}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}
$$

HINT: use the same technique as in Q. 1 but get rid of d.
Q. 4 Complete the previous bound by proving

$$
\frac{-\log _{2}\left(1-t^{2}\right)}{D_{1 / 2}\left(P_{0} \| P_{1}\right)} \leq n_{t}<1+\frac{-2 \cdot \log _{2}(1-t)}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}
$$

HINT: use the second Fuchs - van de Graaf inequality.
Q. 5 Prove that the minimum number n of samples to distinguish P_{0} from P_{1} with advantage at least $\frac{1}{2}$ is such that

$$
\frac{0.41}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}<n<1+\frac{2}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}
$$

2 An IND-CCA Variant of the ElGamal Cryptosytem

Given a key derivation function H and a correct symmetric encryption scheme E / D which can be computed in polynomial time, we define the following cryptosystem:
$\operatorname{Setup}\left(1^{s}\right) \rightarrow \mathrm{pp}$: generate a group G and its prime order q and define some public parameters pp from which we can extract s, q, the neutral element 1 , a generator g, and parameters to be able to make multiplications in polyomially bounded time in terms of s. We assume that group elements have a unique representation.
Gen $(\mathrm{pp}) \rightarrow \mathrm{pk}$, sk: pick $x_{1}, x_{2} \in \mathbf{Z}_{q}$, compute $X_{1}=g^{x_{1}}, X_{2}=g^{x_{2}}$, and define $\mathrm{pk}=$ $\left(\mathrm{pp}, X_{1}, X_{2}\right), \mathrm{sk}=\left(\mathrm{pp}, x_{1}, x_{2}\right)$.
$\operatorname{Enc}(\mathrm{pk}, m) \rightarrow \mathrm{ct}$: pick $y \in \mathbf{Z}_{q}$, compute $Y=g^{y}, Z_{1}=X_{1}^{y}, Z_{2}=X_{2}^{y}, k=H\left(Y, Z_{1}, Z_{2}\right)$, $c=E_{k}(m)$, and define $\mathrm{ct}=(Y, c)$.
$\operatorname{Dec}(\mathrm{sk}, \mathrm{ct}) \rightarrow m:$ [to be defined]
We want to prove the IND-CCA security in the random oracle model, which is defined by the following game Γ_{b} with an adversary \mathcal{A} and the bit b :

```
Game \(\Gamma_{b}\)
    1: pick a function \(H\) at random
        Setup \(\xrightarrow{\$} \mathrm{pp}\)
    3: \(\operatorname{Gen}(\mathrm{pp}) \xrightarrow{\Phi}(\mathrm{pk}, \mathrm{sk})\)
    4: \(\mathcal{A}_{1}^{\mathrm{OH}_{1}, \mathrm{ODec}_{1}}(\mathrm{pk}) \xrightarrow{\$}\left(\mathrm{pt}_{0}, \mathrm{pt}_{1}, \mathrm{st}\right)\)
5: if \(\left|\mathrm{pt}_{0}\right| \neq\left|\mathrm{pt}_{1}\right|\) then return 0
6: \(\mathrm{ct}^{*} \stackrel{\$}{\leftarrow} \mathrm{Enc}^{\mathrm{OH}}\left(\mathrm{pk}, \mathrm{pt}_{b}\right)\)
    \(\mathcal{A}_{2}^{\mathrm{OH}^{\mathrm{OHPC}} 2}\left(\mathrm{st}, \mathrm{ct}^{*}\right) \xrightarrow{\stackrel{9}{\rightarrow}} z\)
    : return \(z\)
```

```
Oracle OH (input)
    1: return \(H\) (input)
Oracle \(\mathrm{ODec}_{1}(\mathrm{ct})\) :
    2: return \(\mathrm{Dec}^{\mathrm{OH}}\) (sk, ct)
Oracle \(\mathrm{ODec}_{2}(\mathrm{ct})\) :
    3: if \(\mathrm{ct}=\mathrm{ct}^{*}\) then return \(\perp\)
    4: return \(\mathrm{Dec}^{\mathrm{OH}}(\mathrm{sk}, \mathrm{ct})\)
```

Q. 1 Describe the decryption algorithm and prove that we have a correct public-key cryptosystem.
Q. 2 Let Γ_{b}^{\prime} be the following variant of Γ_{b} :

```
Game \(\Gamma_{b}^{\prime}\)
    Setup \(\xrightarrow{\$} \mathrm{pp}\)
    \(\mathrm{Gen}(\mathrm{pp}) \xrightarrow{\Phi}(\mathrm{pk}, \mathrm{sk})\)
    3: \(\left(\mathrm{pp}, X_{1}, X_{2}\right) \leftarrow \mathrm{pk}\)
    4: initialize associative array \(T\) to empty
    \(5: \mathcal{A}_{1}^{\mathrm{OH}_{1}, \mathrm{ODec}_{1}}(\mathrm{pk}) \xrightarrow{\Phi}\left(\mathrm{pt}_{0}, \mathrm{pt}_{1}, \mathrm{st}\right)\)
    6: if \(\left|\mathrm{pt}_{0}\right| \neq\left|\mathrm{pt}_{1}\right|\) then return 0
    7: pick \(y^{*} \in \mathbf{Z}_{q}\)
    8: \(Y^{*} \leftarrow g^{y}, Z_{1}^{*} \leftarrow X_{1}^{y^{*}}, Z_{2}^{*} \leftarrow X_{2}^{y^{*}}\)
    9: \(k^{*} \leftarrow \mathrm{OH}\left(Y^{*}, Z_{1}^{*}, Z_{2}^{*}\right)\)
    10: \(c^{*} \leftarrow E_{k^{*}}\left(\mathrm{pt}_{b}\right)\)
    \(\mathrm{ct}^{*} \leftarrow\left(Y^{*}, c^{*}\right)\)
        \(\mathcal{A}_{2}^{\mathrm{OH}, \mathrm{ODec}_{2}}\left(\mathrm{st}, \mathrm{ct}^{*}\right) \xrightarrow{\Phi} z\)
        return \(z\)
```

Prove that $\operatorname{Pr}\left[\Gamma_{b} \rightarrow 1\right]=\operatorname{Pr}\left[\Gamma_{b}^{\prime} \rightarrow 1\right]$ for all b.
Q. 3 Let $\Gamma_{b}^{\prime \prime}$ be a variant of Γ_{b}^{\prime} in which Step 9 of the game is replaced by

9: pick k^{*} at random

We define the failure event F that OH is queried with input $\left(Y^{*}, Z_{1}^{*}, Z_{2}^{*}\right)$ in Γ_{b}^{\prime} at some time during the game except on Step 9. Prove that $\left|\operatorname{Pr}\left[\Gamma_{b}^{\prime} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{b}^{\prime \prime} \rightarrow 1\right]\right| \leq \operatorname{Pr}[F]$. Q. 4 We say that E / D is secure if for any PPT algorithm \mathcal{B}, the advantage

$$
\operatorname{Adv}_{\mathcal{B}}=\operatorname{Pr}\left[\Gamma_{1}^{*} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}^{*} \rightarrow 1\right]
$$

is negligible, with Γ_{b}^{*} defined as follows:

Game Γ_{b}^{*}	Oracle $\mathrm{OD}(c):$
1: $\mathcal{B}_{1}() \xrightarrow{\Phi}\left(m_{0}, m_{1}\right.$, st $)$	1: if $c=c^{*}$ then return \perp
2: if $\left\|m_{0}\right\| \neq\left\|m_{1}\right\|$ then return 0	2: return $D_{k^{*}}(c)$
3: pick a random key k^{*}	
4: $c^{*} \leftarrow E_{k^{*}}\left(m_{b}\right)$	
5: $\mathcal{B}_{2}^{\text {OD }\left(\text { st }, c^{*}\right) \xrightarrow{\Phi} z}$	
6: return z	

Prove that if E / D is secure, then $\operatorname{Pr}\left[\Gamma_{1}^{\prime \prime} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}^{\prime \prime} \rightarrow 1\right]$ is negligible.
Q. 5 We consider the game Γ_{b}^{\prime} from Q. 2 and the event F from Q.3. We consider a variant $\bar{\Gamma}_{b}$ of Γ_{b}^{\prime} as follows:

Game $\bar{\Gamma}_{b}$	Oracle OH (input)
1: Setup ${ }^{\text {s }}$ pp	1: $\left(Y, Z_{1}, Z_{2}\right) \leftarrow$ input
2: Gen (pp) $\xrightarrow{\text { P }}(\mathrm{pk}, \mathrm{sk})$	2: if $Z_{1}=Y^{x_{1}}$ and $Z_{2}=Y^{x_{2}}$ then
3: $\left(\mathrm{pp}, X_{1}, X_{2}\right) \leftarrow \mathrm{pk},\left(\mathrm{pp}, x_{1}, x_{2}\right) \leftarrow \mathrm{sk}$	3: if $\operatorname{Good}(Y)$ undefined then
4: initialize associative arrays Good and T to empty	4: \quad pick $\operatorname{Good}(Y)$ at random 5: end if
5: $\mathcal{A}_{1}^{\text {OH, }}$, $\mathrm{OLec}_{1}(\mathrm{pk}) \xrightarrow{\text { d }}\left(\mathrm{pt}_{0}, \mathrm{pt}_{1}, \mathrm{st}\right)$	6: return $\operatorname{Good}(Y)$ 7: else
6: if $\left\|\mathrm{pt}_{0}\right\| \neq\left\|\mathrm{pt}_{1}\right\|$ then return 0	8: if T (input) is not defined then
7: pick $y^{*} \in \mathbf{Z}_{q}$	9: pick T (input) at random
8: $Y^{*} \leftarrow g^{y^{*}}, Z_{1}^{*} \leftarrow X_{1}^{y^{*}}, Z_{2}^{*} \leftarrow X_{2}^{y^{*}}$	10: end if
9: $k^{*} \leftarrow \mathrm{OH}\left(Y^{*}, Z_{1}^{*}, Z_{2}^{*}\right)$	11: return T (input)
10: $c^{*} \leftarrow E_{k^{*}}\left(\mathrm{pt}_{b}\right)$	12: end if
11: $\mathrm{ct}^{*} \leftarrow\left(Y^{*}, c^{*}\right)$	
12: $\mathcal{A}_{2}^{\text {OH,ODec }}$ ($\left.\mathrm{st}^{\text {c }} \mathrm{ct}^{*}\right) \xrightarrow{\Phi} z$	Oracle $\mathrm{ODec}_{1}(\mathrm{ct}): 1$
13: return z	13: return $\mathrm{Dec}^{\text {(}}$ (sk, ct)
	Oracle $\mathrm{ODec}_{2}(\mathrm{ct})$:
	14: $(Y, c) \leftarrow \mathrm{ct}$
	15: if $(Y, c)=\mathrm{ct}^{*}$ then return \perp
	16: if $Y=Y^{*}$ then return $D_{k^{*}}(c)$

We define the event \bar{F} in $\bar{\Gamma}_{b}$ as the event F in Γ_{b}^{\prime}. Prove that $\operatorname{Pr}\left[\bar{\Gamma}_{b} \rightarrow 1\right]=\operatorname{Pr}\left[\Gamma_{b}^{\prime} \rightarrow 1\right]$ and that $\operatorname{Pr}[F]=\operatorname{Pr}[\bar{F}]$.
Q. 6 We define the Strong Twin Diffie-Hellman game as follows:

```
Game STDH:
    Setup \(\xrightarrow{\Phi} \mathrm{pp}\)
    2: pick \(x_{1}, x_{2} \in \mathbf{Z}_{q}\)
    3: \(X_{1} \leftarrow g^{x_{1}}, X_{2} \leftarrow g^{x_{2}}\)
    4: pick \(y^{*} \in \mathbf{Z}_{q}\)
    5: \(Y^{*} \leftarrow g^{y^{*}}, Z_{1}^{*} \leftarrow X_{1}^{y^{*}}, Z_{2}^{*} \leftarrow X_{2}^{y^{*}}\)
    6: \(\mathcal{C}^{\text {ODTDH }}\left(\mathrm{pp}, X_{1}, X_{2}, Y^{*}\right) \xrightarrow{\Phi}\left(Z_{1}, Z_{2}\right)\)
    7: return \(1_{Z_{1}=Z_{1}^{*}, Z_{2}=Z_{2}^{*}}\)
```

Oracle $\operatorname{ODTDH}\left(Y, Z_{1}, Z_{2}\right)$:
1: return $1_{Z_{1}=Y^{x_{1}} \wedge Z_{2}=Y^{x_{2}}}$

We consider the game $\bar{\Gamma}_{b}$ and the event \bar{F}. Given an adversary \mathcal{A} playing the $\bar{\Gamma}_{b}$ game, construct an adversary \mathcal{C} playing the STDH game such that

$$
\operatorname{Pr}[\bar{F}]=\operatorname{Pr}\left[\mathrm{STDH}_{\mathcal{C}} \rightarrow 1\right]
$$

HINT: find a way to simulate $\bar{\Gamma}_{b}$ without sk.
Q. 7 Summarize all what we did and prove that the cryptosystem is IND-CCA secure in the random oracle model, under the assumption that the strong twin Diffie-Hellman problem STDH is hard and that the E / D scheme is secure.
NOTE: in a twin exercise, we show STDH is equivalent to CDH.

3 Equivalence of CDH and the Strong Twin DH Problems

Note: this is a twin exercise of "An IND-CCA Variant of the ElGamal Cryptosystem". However, both exercises are totally independent.

We define the Strong Twin Diffie-Hellman STDH game and the classical CDH game as follows:

```
Game STDH:
    1: Setup \(\xrightarrow{\$} \mathrm{pp}\)
    : pick \(x_{1}, x_{2} \in \mathbf{Z}_{q}\)
    \(: X_{1} \leftarrow g^{x_{1}}, X_{2} \leftarrow g^{x_{2}}\)
    : pick \(y^{*} \in \mathbf{Z}_{q}\)
    \(Y^{*} \leftarrow g^{y^{*}}, Z_{1}^{*} \leftarrow X_{1}^{y^{*}}, Z_{2}^{*} \leftarrow X_{2}^{y^{*}}\)
    6: \(\mathcal{A}^{\text {ODTDH }}\left(\mathrm{pp}, X_{1}, X_{2}, Y^{*}\right) \xrightarrow{s}\left(Z_{1}, Z_{2}\right)\)
    : return \(1_{Z_{1}=Z_{1}^{*}, Z_{2}=Z_{2}^{*}}\)
Oracle \(\operatorname{ODTDH}\left(Y, Z_{1}, Z_{2}\right)\) :
    8: return \(1_{Z_{1}=Y^{x_{1}} \wedge Z_{2}=Y^{x_{2}}}\)
```

Our goal is to prove the equivalence between the two problems.
Here, $\operatorname{Setup}\left(1^{s}\right) \rightarrow \mathrm{pp}$ is an algorithm which generates a group G and its prime order q in some public parameters pp. Given pp, we can extract q, the neutral element 1 , a generator g, and parameters to be able to make multiplications in polyomially bounded time. We assume that group elements have a unique representation.
Q. 1 Given an adversary \mathcal{B} playing the CDH game, construct and adversary \mathcal{A} playing the STDH game such that $\operatorname{Pr}[$ STDH $\rightarrow 1] \geq \operatorname{Pr}[\mathrm{CDH} \rightarrow 1]^{2}$.
Q. 2 We define the following random variables: $x, u, v, y, z_{1}, z_{2} \in \mathbf{Z}_{q}, x_{1}=x$, and $x_{2}=v-$ $x u \bmod q$. We assume that (x, u, v) is uniformly distributed in \mathbf{Z}_{q}^{3} and that $\left(y, z_{1}, z_{2}\right)=$ $f\left(x_{1}, x_{2}\right)$ for some function f.
Q.2a Prove that $\left(x_{1}, x_{2}, u\right)$ is uniformly distributed in \mathbf{Z}_{q}^{3}.
Q.2b Prove that

$$
\operatorname{Pr}\left[z_{1} u+z_{2}=y v \mid z_{1}=y x_{1}, z_{2}=y x_{2}\right]=1 \quad, \quad \operatorname{Pr}\left[z_{1} u+z_{2}=y v \mid z_{1} \neq y x_{1} \vee z_{2} \neq y x_{2}\right] \leq \frac{1}{q}
$$

(where equalities are modulo q).
Q. 3 Given an adversary \mathcal{A} playing the STDH game, prove that the following \mathcal{B} playing the CDH game is such that $\operatorname{Pr}[\mathrm{CDH} \rightarrow 1] \geq \operatorname{Pr}[\mathrm{STDH} \rightarrow 1]-\frac{Q}{q}$ where Q is the total number of queries of \mathcal{A}.

```
\(\mathcal{B}(\mathrm{pp}, X, Y): \quad\) Oracle \(\mathrm{O}\left(\hat{Y}, \hat{Z}_{1}, \hat{Z}_{2}\right)\)
    1: pick \(u, v \in \mathbf{Z}_{q} \quad\) 1: return \(1_{\hat{Z}_{1}^{u} \hat{Z}_{2}=\hat{Y}^{v}}\)
    2: \(X_{1} \leftarrow X, X_{2} \leftarrow g^{v} X^{-u}\)
    3: simulate \(\mathcal{A}\left(\mathrm{pp}, X_{1}, X_{2}, Y\right) \xrightarrow{\$}\left(Z_{1}, Z_{2}\right)\)
    with oracle O instead of ODTDH
    4: return \(Z_{1}\)
```

