Advanced Cryptography — Final Exam

Serge Vaudenay

26.6.2019

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Minimal Number of Samples to Distinguish Distributions

We consider two probability distributions P_0 and P_1 over a set \mathcal{Z} . We denote by $d(P_0, P_1)$ the *statistical distance* between them, which is

$$d(P_0, P_1) = \frac{1}{2} \sum_{z \in \mathcal{Z}} |P_0(z) - P_1(z)|$$

We also define the *Hellinger distance*

$$H(P_0, P_1) = \sqrt{1 - \sum_{z \in \mathcal{Z}} \sqrt{P_0(z) P_1(z)}}$$

This is a distance in the sense that we always have $H(P_0, P_1) \ge 0$, $H(P_0, P_1) = 0 \iff P_0 = P_1$, and the triangular inequality. We further define the *fidelity*

$$F(P_0, P_1) = 1 - H(P_0, P_1)^2$$

The Fuchs - van de Graaf inequalities relate d and F as follows

$$1 - F(P_0, P_1) \le d(P_0, P_1) \le \sqrt{1 - F(P_0, P_1)^2}$$

Given two distributions P and Q, we denote by $P \otimes Q$ the distribution of a pair (X, Y) of independent variables X and Y such that X follows P and Y follows Q. We also denote n times

 $P^{\otimes n} = \overbrace{P \otimes \cdots \otimes P}^{\otimes n}.$

We are interested in distinguishing the two distributions based on a vector of n i.i.d. samples following one or the other distribution. Given a real number $t \in [0, 1]$, we let n_t be the minimal integer such that there exists a distinguisher using n_t samples with advantage at least t. Q.1 By using an easy bound on the statistical distance, show that for all t, we have

$$n_t \ge \frac{t}{d(P_0, P_1)}$$

Q.2 Prove that $F(P_0^{\otimes n}, P_1^{\otimes n}) = F(P_0, P_1)^n$.

HINT: first prove $F(P_0 \otimes Q_0, P_1 \otimes Q_1) = F(P_0, P_1)F(Q_0, Q_1)$. **Q.3** By writing $D_{1/2}(P_0 || P_1) = -2 \cdot \log_2 F(P_0, P_1)$, prove that

$$n_t \ge \frac{-\log_2(1-t^2)}{D_{1/2}(P_0 \| P_1)}$$

HINT: use the same technique as in Q.1 but get rid of d. Q.4 Complete the previous bound by proving

$$\frac{-\log_2(1-t^2)}{D_{1/2}(P_0||P_1)} \le n_t < 1 + \frac{-2 \cdot \log_2(1-t)}{D_{1/2}(P_0||P_1)}$$

HINT: use the second Fuchs - van de Graaf inequality.

Q.5 Prove that the minimum number n of samples to distinguish P_0 from P_1 with advantage at least $\frac{1}{2}$ is such that

$$\frac{0.41}{D_{1/2}(P_0 \| P_1)} < n < 1 + \frac{2}{D_{1/2}(P_0 \| P_1)}$$

2 An IND-CCA Variant of the ElGamal Cryptosytem

Given a key derivation function H and a correct symmetric encryption scheme E/D which can be computed in polynomial time, we define the following cryptosystem:

 $\mathsf{Setup}(1^s) \to \mathsf{pp}$: generate a group G and its prime order q and define some public parameters pp from which we can extract s, q, the neutral element 1, a generator g, and parameters to be able to make multiplications in polyomially bounded time in terms of s. We assume that group elements have a unique representation.

 $\operatorname{\mathsf{Gen}}(\operatorname{\mathsf{pp}}) \to \operatorname{\mathsf{pk}}, \operatorname{\mathsf{sk:}}$ pick $x_1, x_2 \in \mathbf{Z}_q$, compute $X_1 = g^{x_1}, X_2 = g^{x_2}$, and define $\operatorname{\mathsf{pk}} = (\operatorname{\mathsf{pp}}, X_1, X_2), \operatorname{\mathsf{sk}} = (\operatorname{\mathsf{pp}}, x_1, x_2).$

 $\mathsf{Enc}(\mathsf{pk}, m) \to \mathsf{ct:} \text{ pick } y \in \mathbf{Z}_q, \text{ compute } Y = g^y, Z_1 = X_1^y, Z_2 = X_2^y, k = H(Y, Z_1, Z_2), c = E_k(m), \text{ and define } \mathsf{ct} = (Y, c).$

 $Dec(sk, ct) \rightarrow m$: [to be defined]

We want to prove the IND-CCA security in the random oracle model, which is defined by the following game Γ_b with an adversary \mathcal{A} and the bit b:

Game Γ_b	Oracle OH(input)
1: pick a function H at random	1: return $H(input)$
2: Setup $\xrightarrow{\$}$ pp	Oracle $ODec_1(ct)$:
3: $Gen(pp) \xrightarrow{\$} (pk, sk)$	2: return $Dec^{OH}(sk, ct)$
4: $\mathcal{A}_1^{OH,ODec_1}(pk) \xrightarrow{\$} (pt_0,pt_1,st)$	Oracle ODec $_{0}(ct)$:
5: if $ pt_0 \neq pt_1 $ then return 0	3: if $ct = ct^*$ then return \perp
6: $ct^* Enc^{OH}(pk,pt_b)$	4: return $Dec^{OH}(sk,ct)$
7: $\mathcal{A}_2^{OH,ODec_2}(st,ct^*) \xrightarrow{\$} z$	
8: return z	

- **Q.1** Describe the decryption algorithm and prove that we have a correct public-key cryptosystem.
- **Q.2** Let Γ'_b be the following variant of Γ_b :

Game Γ'_b Oracle OH(input) 1: if T(input) is not defined then 1: Setup $\xrightarrow{\$}$ pp 2: pick T(input) at random 2: Gen(pp) $\xrightarrow{\$}$ (pk, sk) 3: end if 3: $(\mathsf{pp}, X_1, X_2) \leftarrow \mathsf{pk}$ 4: return T(input)4: initialize associative array T to empty 5: $\mathcal{A}_1^{\mathsf{OH},\mathsf{ODec}_1}(\mathsf{pk}) \xrightarrow{\$} (\mathsf{pt}_0,\mathsf{pt}_1,\mathsf{st})$ Oracle $ODec_1(ct)$: 5: return $Dec^{OH}(sk, ct)$ 6: if $|pt_0| \neq |pt_1|$ then return 0 7: pick $y^* \in \mathbf{Z}_q$ Oracle $ODec_2(ct)$: 8: $Y^* \leftarrow g^y, Z_1^* \leftarrow X_1^{y^*}, Z_2^* \leftarrow X_2^{y^*}$ 6: $(Y, c) \leftarrow \mathsf{ct}$ 9: $k^* \leftarrow \mathsf{OH}(Y^*, Z_1^*, Z_2^*)$ 7: if $(Y, c) = ct^*$ then return \bot 10: $c^* \leftarrow E_{k^*}(\mathsf{pt}_b)$ 8: if $Y = Y^*$ then return $D_{k^*}(c)$ 11: $\mathsf{ct}^* \leftarrow (Y^*, c^*)$ 9: **return** Dec^{OH}(sk, ct) 12: $\mathcal{A}_2^{\mathsf{OH},\mathsf{ODec}_2}(\mathsf{st},\mathsf{ct}^*) \xrightarrow{\$} z$ 13: return z

Prove that $\Pr[\Gamma_b \to 1] = \Pr[\Gamma'_b \to 1]$ for all b.

Q.3 Let Γ_b'' be a variant of Γ_b' in which Step 9 of the game is replaced by 9: pick k^* at random

We define the failure event F that OH is queried with input (Y^*, Z_1^*, Z_2^*) in Γ'_b at some time during the game except on Step 9. Prove that $|\Pr[\Gamma'_b \to 1] - \Pr[\Gamma''_b \to 1]| \leq \Pr[F]$. Q.4 We say that E/D is secure if for any PPT algorithm \mathcal{B} , the advantage

$$\mathsf{Adv}_{\mathcal{B}} = \Pr[\Gamma_1^* \to 1] - \Pr[\Gamma_0^* \to 1]$$

is negligible, with \varGamma_b^* defined as follows:

Game Γ_b^* 1: $\mathcal{B}_1() \stackrel{\$}{\rightarrow} (m_0, m_1, \text{st})$ 2: if $|m_0| \neq |m_1|$ then return 0 3: pick a random key k^* 4: $c^* \leftarrow E_{k^*}(m_b)$ 5: $\mathcal{B}_2^{\text{OD}}(\text{st}, c^*) \stackrel{\$}{\rightarrow} z$ 6: return z Oracle OD(c): 1: if $c = c^*$ then return \perp 2: return $D_{k^*}(c)$

Prove that if E/D is secure, then $\Pr[\Gamma_1'' \to 1] - \Pr[\Gamma_0'' \to 1]$ is negligible.

Q.5 We consider the game Γ'_b from Q.2 and the event F from Q.3. We consider a variant $\overline{\Gamma}_b$ of Γ'_b as follows:

Game $\overline{\Gamma}_b$ Oracle OH(input) 1: Setup $\xrightarrow{\$}$ pp 1: $(Y, Z_1, Z_2) \leftarrow input$ 2: if $Z_1 = Y^{x_1}$ and $Z_2 = Y^{x_2}$ then 2: Gen(pp) $\xrightarrow{\$}$ (pk, sk) if Good(Y) undefined then 3: 3: $(\mathsf{pp}, X_1, X_2) \leftarrow \mathsf{pk}, (\mathsf{pp}, x_1, x_2) \leftarrow \mathsf{sk}$ pick Good(Y) at random 4:4: initialize associative arrays Good and T to 5: end if empty 6: return Good(Y)5: $\mathcal{A}_1^{\mathsf{OH},\mathsf{ODec}_1}(\mathsf{pk}) \xrightarrow{\$} (\mathsf{pt}_0,\mathsf{pt}_1,\mathsf{st})$ 7: else 6: if $|\mathsf{pt}_0| \neq |\mathsf{pt}_1|$ then return 0 8: if T(input) is not defined then 7: pick $y^* \in \mathbf{Z}_q$ 9: pick T(input) at random 8: $Y^* \leftarrow g^{y^*}, Z_1^* \leftarrow X_1^{y^*}, Z_2^* \leftarrow X_2^{y^*}$ 9: $k^* \leftarrow \mathsf{OH}(Y^*, Z_1^*, Z_2^*)$ 10:end if 11: return T(input)10: $c^* \leftarrow E_{k^*}(\mathsf{pt}_b)$ 12: end if 11: $ct^* \leftarrow (Y^*, c^*)$ Oracle $ODec_1(ct)$: 12: $\mathcal{A}_2^{\mathsf{OH},\mathsf{ODec}_2}(\mathsf{st},\mathsf{ct}^*) \xrightarrow{\$} z$ 13: return Dec^{ÓH}(sk, ct) 13: return zOracle $ODec_2(ct)$: 14: $(Y, c) \leftarrow \mathsf{ct}$ 15: if $(Y, c) = ct^*$ then return \perp 16: if $Y = Y^*$ then return $D_{k^*}(c)$ 17: return $Dec^{OH}(sk, ct)$

We define the event \overline{F} in $\overline{\Gamma}_b$ as the event F in Γ'_b . Prove that $\Pr[\overline{\Gamma}_b \to 1] = \Pr[\Gamma'_b \to 1]$ and that $\Pr[F] = \Pr[\overline{F}]$.

Q.6 We define the Strong Twin Diffie-Hellman game as follows:

Game STDH: 1: Setup $\stackrel{\$}{\rightarrow}$ pp 2: pick $x_1, x_2 \in \mathbb{Z}_q$ 3: $X_1 \leftarrow g^{x_1}, X_2 \leftarrow g^{x_2}$ 4: pick $y^* \in \mathbb{Z}_q$ 5: $Y^* \leftarrow g^{y^*}, Z_1^* \leftarrow X_1^{y^*}, Z_2^* \leftarrow X_2^{y^*}$ 6: $\mathcal{C}^{\text{ODTDH}}(\text{pp}, X_1, X_2, Y^*) \stackrel{\$}{\rightarrow} (Z_1, Z_2)$ 7: return $1_{Z_1 = Z_1^*, Z_2 = Z_2^*}$ We consider the game $\overline{\Gamma}_b$ and the event \overline{F} . Given an adversary \mathcal{A} playing the $\overline{\Gamma}_b$ game, construct an adversary \mathcal{C} playing the STDH game such that

$$\Pr[\overline{F}] = \Pr[\mathsf{STDH}_{\mathcal{C}} \to 1]$$

HINT: find a way to simulate $\overline{\Gamma}_b$ without sk.

Q.7 Summarize all what we did and prove that the cryptosystem is IND-CCA secure in the random oracle model, under the assumption that the strong twin Diffie-Hellman problem STDH is hard and that the E/D scheme is secure. NOTE: in a twin exercise, we show STDH is equivalent to CDH.

3 Equivalence of CDH and the Strong Twin DH Problems

Note: this is a twin exercise of "An IND-CCA Variant of the ElGamal Cryptosystem". However, both exercises are totally independent.

We define the Strong Twin Diffie-Hellman STDH game and the classical CDH game as follows:

Game STDH: Game CDH 1: Setup \xrightarrow{s} pp 1: Setup $\xrightarrow{\circ}$ pp 2: pick $x_1, x_2 \in \mathbf{Z}_q$ 2: pick $x, y \in \mathbf{Z}_q$ 3: $X_1 \leftarrow g^{x_1}, X_2 \leftarrow g^{x_2}$ 3: $X \leftarrow g^x, Y \leftarrow g^y$ 4: pick $y^* \in \mathbf{Z}_q$ 4: $\mathcal{B}(\mathsf{pp}, X, Y) \xrightarrow{\$} Z$ 5: $Y^* \leftarrow g^{y^*}, Z_1^* \leftarrow X_1^{y^*}, Z_2^* \leftarrow X_2^{y^*}$ 5: return $1_{Z=Y^x}$ 6: $\mathcal{A}^{\mathsf{ODTDH}}(\mathsf{pp}, X_1, X_2, Y^*) \xrightarrow{\$} (Z_1, Z_2)$ 7: return $1_{Z_1=Z_1^*, Z_2=Z_2^*}$ Oracle $\mathsf{ODTDH}(Y, Z_1, Z_2)$: 8: return $1_{Z_1=Y^{x_1} \wedge Z_2=Y^{x_2}}$

Our goal is to prove the equivalence between the two problems.

Here, $\operatorname{Setup}(1^s) \to \operatorname{pp}$ is an algorithm which generates a group G and its prime order q in some public parameters pp . Given pp , we can extract q, the neutral element 1, a generator g, and parameters to be able to make multiplications in polyomially bounded time. We assume that group elements have a unique representation.

- Q.1 Given an adversary \mathcal{B} playing the CDH game, construct and adversary \mathcal{A} playing the STDH game such that $\Pr[\mathsf{STDH} \to 1] \ge \Pr[\mathsf{CDH} \to 1]^2$.
- **Q.2** We define the following random variables: $x, u, v, y, z_1, z_2 \in \mathbb{Z}_q$, $x_1 = x$, and $x_2 = v xu \mod q$. We assume that (x, u, v) is uniformly distributed in \mathbb{Z}_q^3 and that $(y, z_1, z_2) = f(x_1, x_2)$ for some function f.
 - **Q.2a** Prove that (x_1, x_2, u) is uniformly distributed in \mathbb{Z}_a^3 .
 - Q.2b Prove that

$$\Pr[z_1u + z_2 = yv|z_1 = yx_1, z_2 = yx_2] = 1 \quad , \quad \Pr[z_1u + z_2 = yv|z_1 \neq yx_1 \lor z_2 \neq yx_2] \le \frac{1}{q}$$

(where equalities are modulo q).

Q.3 Given an adversary \mathcal{A} playing the STDH game, prove that the following \mathcal{B} playing the CDH game is such that $\Pr[\mathsf{CDH} \to 1] \ge \Pr[\mathsf{STDH} \to 1] - \frac{Q}{q}$ where Q is the total number of queries of \mathcal{A} .

 $\begin{array}{lll} \mathcal{B}(\mathsf{pp},X,Y) & & \text{Oracle } \mathsf{O}(\hat{Y},\hat{Z}_{1},\hat{Z}_{2}) \\ 1 & \text{pick } u,v \in \mathbf{Z}_{q} & & 1 \\ 2 & X_{1} \leftarrow X, X_{2} \leftarrow g^{v} X^{-u} \\ 3 & \text{simulate } \mathcal{A}(\mathsf{pp},X_{1},X_{2},Y) \xrightarrow{\$} (Z_{1},Z_{2}) \\ & \text{with oracle } \mathsf{O} \text{ instead of } \mathsf{ODTDH} \\ 4 & \text{return } Z_{1} \end{array}$