Advanced Cryptography — Final Exam Solution

Serge Vaudenay

26.6.2019

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Minimal Number of Samples to Distinguish Distributions

We consider two probability distributions P_0 and P_1 over a set \mathcal{Z} . We denote by $d(P_0, P_1)$ the *statistical distance* between them, which is

$$d(P_0, P_1) = \frac{1}{2} \sum_{z \in \mathcal{Z}} |P_0(z) - P_1(z)|$$

We also define the *Hellinger distance*

$$H(P_0, P_1) = \sqrt{1 - \sum_{z \in \mathcal{Z}} \sqrt{P_0(z) P_1(z)}}$$

This is a distance in the sense that we always have $H(P_0, P_1) \ge 0$, $H(P_0, P_1) = 0 \iff P_0 = P_1$, and the triangular inequality. We further define the *fidelity*

$$F(P_0, P_1) = 1 - H(P_0, P_1)^2$$

The Fuchs - van de Graaf inequalities relate d and F as follows

$$1 - F(P_0, P_1) \le d(P_0, P_1) \le \sqrt{1 - F(P_0, P_1)^2}$$

Given two distributions P and Q, we denote by $P \otimes Q$ the distribution of a pair (X, Y) of independent variables X and Y such that X follows P and Y follows Q. We also denote n times

 $P^{\otimes n} = \overbrace{P \otimes \cdots \otimes P}^{\otimes n}.$

We are interested in distinguishing the two distributions based on a vector of n i.i.d. samples following one or the other distribution. Given a real number $t \in [0, 1]$, we let n_t be the minimal integer such that there exists a distinguisher using n_t samples with advantage at least t. Q.1 By using an easy bound on the statistical distance, show that for all t, we have

$$n_t \ge \frac{t}{d(P_0, P_1)}$$

Let \mathcal{A} be a distinguisher using n_t samples with advantage at least t. Due to the link between advantage and statistical distance, we have $\mathsf{Adv}(\mathcal{A}) \leq d(P_0^{\otimes n_t}, P_1^{\otimes n_t})$, where $P^{\otimes n}$ denotes the distribution of a vector of n i.i.d. random variables of distribution P. The easy bound on statistical distance says $d(P_0^{\otimes n}, P_1^{\otimes n}) \leq n \cdot d(P_0, P_1)$. Hence,

$$t \leq \mathsf{Adv}(\mathcal{A}) \leq d(P_0^{\otimes n_t}, P_1^{\otimes n_t}) \leq n_t \cdot d(P_0, P_1)$$

We deduce $n_t \geq \frac{t}{d(P_0, P_1)}$.

Q.2 Prove that $F(P_0^{\otimes n}, P_1^{\otimes n}) = F(P_0, P_1)^n$. HINT: first prove $F(P_0 \otimes Q_0, P_1 \otimes Q_1) = F(P_0, P_1)F(Q_0, Q_1)$.

We have
$$F(P_0, P_1) = 1 - H(P_0, P_1)^2 = \sum_{z \in \mathcal{Z}} \sqrt{P_0(z)P_1(z)}$$

Hence,

$$F(P_0 \otimes Q_0, P_1 \otimes Q_1) = \sum_{(z_1, z_2) \in \mathcal{Z}_1 \times \mathcal{Z}_2} \sqrt{P_0(z_1)Q_0(z_2)P_1(z_1)Q_1(z_2)}$$
$$= \sum_{z_1 \in \mathcal{Z}_1} \sqrt{P_0(z_1)P_1(z_1)} \sum_{z_2 \in \mathcal{Z}_2} \sqrt{Q_0(z_2)Q_1(z_2)}$$
$$= F(P_0, P_1)F(Q_0, Q_1)$$
By induction, we deduce $F(P_0^{\otimes n}, P_1^{\otimes n}) = F(P_0, P_1)^n$.

Q.3 By writing $D_{1/2}(P_0||P_1) = -2 \cdot \log_2 F(P_0, P_1)$, prove that

$$n_t \ge \frac{-\log_2(1-t^2)}{D_{1/2}(P_0||P_1)}$$

HINT: use the same technique as in Q.1 but get rid of d.

Using the same technique as Q.1, we have

$$t \leq \mathsf{Adv}(\mathcal{A}) \leq d(P_0^{\otimes n_t}, P_1^{\otimes n_t})$$

We now use the upper bound of d in terms of F to obtain

$$t \le d(P_0^{\otimes n_t}, P_1^{\otimes n_t}) \le \sqrt{1 - F(P_0^{\otimes n_t}, P_1^{\otimes n_t})^2}$$

and, with the multiplicativity of F:

$$t \le \sqrt{1 - F(P_0, P_1)^{2n_t}}$$

Hence

$$n_t \ge \frac{\ln(1-t^2)}{2 \cdot \ln F(P_0, P_1)} = \frac{-\log_2(1-t^2)}{D_{1/2}(P_0 || P_1)}$$

Q.4 Complete the previous bound by proving

$$\frac{-\log_2(1-t^2)}{D_{1/2}(P_0||P_1)} \le n_t < 1 + \frac{-2 \cdot \log_2(1-t)}{D_{1/2}(P_0||P_1)}$$

HINT: use the second Fuchs - van de Graaf inequality.

We take the best distinguisher \mathcal{B} based on $n_t - 1$ samples, we have $\mathsf{Adv}(\mathcal{B}) = d(P_0^{\otimes n_t - 1}, P_1^{\otimes n_t - 1})$ and $\mathsf{Adv}(\mathcal{B}) \leq t$. Hence, $t \geq \mathsf{Adv}(\mathcal{B}) = d(P_0^{\otimes n_t - 1}, P_1^{\otimes n_t - 1})$

We use the lower bound of d in terms of F to obtain

$$t > d(P_0^{\otimes n_t - 1}, P_1^{\otimes n_t - 1}) \ge 1 - F(P_0^{\otimes n_t - 1}, P_1^{\otimes n_t - 1})$$

and, with the multiplicativity of F:

$$t > 1 - F(P_0, P_1)^{n_t - 1}$$

Hence

$$n_t < 1 + \frac{\ln(1-t)}{\ln F(P_0, P_1)} = 1 + \frac{-2 \cdot \log_2(1-t)}{D_{1/2}(P_0 \| P_1)}$$

Q.5 Prove that the minimum number n of samples to distinguish P_0 from P_1 with advantage at least $\frac{1}{2}$ is such that

$$\frac{0.41}{D_{1/2}(P_0 \| P_1)} < n < 1 + \frac{2}{D_{1/2}(P_0 \| P_1)}$$

We apply the previous bound with $t = \frac{1}{2}$ and see that $\log_2(1-t) = -1$ and $-\log_2(1-t^2) > 0.41$.

2 An IND-CCA Variant of the ElGamal Cryptosytem

This exercise is inspired from Cash-Kiltz-Shoup, The Twin Diffie-Hellman Problem and Applications, EUROCRYPT 2008, LNCS vol. 4965, Springer.

Given a key derivation function H and a correct symmetric encryption scheme E/D which can be computed in polynomial time, we define the following cryptosystem:

- Setup $(1^s) \to pp$: generate a group G and its prime order q and define some public parameters pp from which we can extract s, q, the neutral element 1, a generator g, and parameters to be able to make multiplications in polyomially bounded time in terms of s. We assume that group elements have a unique representation.
- $\operatorname{\mathsf{Gen}}(\operatorname{\mathsf{pp}}) \to \operatorname{\mathsf{pk}}, \operatorname{\mathsf{sk:}} \operatorname{pick} x_1, x_2 \in \mathbf{Z}_q$, compute $X_1 = g^{x_1}, X_2 = g^{x_2}$, and define $\operatorname{\mathsf{pk}} = (\operatorname{\mathsf{pp}}, X_1, X_2), \operatorname{\mathsf{sk}} = (\operatorname{\mathsf{pp}}, x_1, x_2).$
- $\mathsf{Enc}(\mathsf{pk}, m) \to \mathsf{ct:} \text{ pick } y \in \mathbf{Z}_q, \text{ compute } Y = g^y, Z_1 = X_1^y, Z_2 = X_2^y, k = H(Y, Z_1, Z_2), c = E_k(m), \text{ and define } \mathsf{ct} = (Y, c).$
- $Dec(sk, ct) \rightarrow m$: [to be defined]

We want to prove the IND-CCA security in the random oracle model, which is defined by the following game Γ_b with an adversary \mathcal{A} and the bit b:

Game Γ_b	Oracle OH(input)
1: pick a function H at random	1: return $H(input)$
2: Setup $\xrightarrow{\$} pp$	Oracle $ODec_1(ct)$:
3: $Gen(pp) \xrightarrow{\mathfrak{d}} (pk, sk)$	2: return $Dec^{OH}(sk,ct)$
$4: \ \mathcal{A}_1^{OH,ODec_1}(pk) \xrightarrow{\$} (pt_0,pt_1,st)$	Oracle $ODec_2(ct)$:
5: if $ pt_0 \neq pt_1 $ then return 0	3: if $ct = ct^*$ then return \perp 4: return $Dec^{OH}(sk, ct)$
6: $ct^* \xleftarrow{\$} Enc^{OH}(pk,pt_b)$	
7: $\mathcal{A}_2^{OH,ODec_2}(st,ct^*) \xrightarrow{\$} z$	
8: return z	

Q.1 Describe the decryption algorithm and prove that we have a correct public-key cryptosystem.

Decryption of ciphertext (Y, c) with secret key (x_1, x_2) works as follows: We compute $Y^{x_1} = Z'_1$, $Y^{x_2} = Z'_2$, $H(Y, Z'_1, Z'_2) = k'$, and finally $D_{k'}(c) = m'$. Since we can do multiplications in polynomial time, we can exponentiate in polynomial time using the square-and-multiply algorithm. Hence, we have a public-key cryptosystem. We have $Z'_1 = Y^{x_1} = g^{yx_1} = X^y_1 = Z_1$, $Z'_2 = Y^{x_2} = g^{yx_2} = X^y_2 = Z_2$, so $k' = H(Y, Z_1, Z_2) = k$, and finally $m' = D_k(c) = m$ due to the correctness of the E/D scheme. Hence, the cryptosystem is correct.

Q.2 Let Γ'_b be the following variant of Γ_b :

Game Γ'_b Oracle OH(input) 1: if T(input) is not defined then 1: Setup $\xrightarrow{\$}$ pp 2: pick T(input) at random 2: Gen(pp) $\xrightarrow{\$}$ (pk, sk) 3: end if 3: $(\mathsf{pp}, X_1, X_2) \leftarrow \mathsf{pk}$ 4: return T(input)4: initialize associative array T to empty 5: $\mathcal{A}_{1}^{\mathsf{OH},\mathsf{ODec}_{1}}(\mathsf{pk}) \xrightarrow{\$} (\mathsf{pt}_{0},\mathsf{pt}_{1},\mathsf{st})$ Oracle $ODec_1(ct)$: 5: return Dec^{OH}(sk, ct) 6: if $|\mathsf{pt}_0| \neq |\mathsf{pt}_1|$ then return 0 7: pick $y^* \in \mathbf{Z}_q$ 8: $Y^* \leftarrow g^{y^*}, Z_1^* \leftarrow X_1^{y^*}, Z_2^* \leftarrow X_2^{y^*}$ Oracle $ODec_2(ct)$: 6: $(Y, c) \leftarrow \mathsf{ct}$ 9: $k^* \leftarrow \mathsf{OH}(Y^*, Z_1^*, Z_2^*)$ 7: if $(Y, c) = \mathsf{ct}^*$ then return \bot 10: $c^* \leftarrow E_{k^*}(\mathsf{pt}_b)$ 8: if $Y = Y^*$ then return $D_{k^*}(c)$ 11: $ct^* \leftarrow (Y^*, c^*)$ 9: return $Dec^{OH}(sk, ct)$ 12: $\mathcal{A}_2^{\mathsf{OH},\mathsf{ODec}_2}(\mathsf{st},\mathsf{ct}^*) \xrightarrow{\$} z$ 13: return z

Prove that $\Pr[\Gamma_b \to 1] = \Pr[\Gamma'_b \to 1]$ for all b.

The difference between Γ_b and Γ'_b is in - expanding Enc in the game to define the variables Y^* and k^* ; - the simulation of OH by the lazy sampling technique; - Step 8 of $ODec_2$. All those changes induce no behavior modification. These are bridging steps.

Q.3 Let Γ_b'' be a variant of Γ_b' in which Step 9 of the game is replaced by 9: pick k^* at random

We define the failure event F that OH is queried with input (Y^*, Z_1^*, Z_2^*) in Γ'_b at some time during the game except on Step 9. Prove that $|\Pr[\Gamma'_b \to 1] - \Pr[\Gamma''_b \to 1]| \leq \Pr[F]$.

The difference between Γ'_b and Γ''_b is that T is not used any more in Step 9. Hence, $T(Y^*, Z_1^*, Z_2^*)$ is neither set nor checked. If F never occurs, $T(Y^*, Z_1^*, Z_2^*)$ is never used anywhere else. This, it is the same to query Hwith (Y^*, Z_1^*, Z_2^*) and to pick a random k^* . Hence, Γ'_b and Γ''_b are identical when F does not occur. Due to the difference lemma, we obtain $|\Pr[\Gamma'_b] \to 1| - \Pr[\Gamma''_b] \to 1|| \leq \Pr[F]$.

Q.4 We say that E/D is secure if for any PPT algorithm \mathcal{B} , the advantage

$$\mathsf{Adv}_{\mathcal{B}} = \Pr[\Gamma_1^* \to 1] - \Pr[\Gamma_0^* \to 1]$$

is negligible, with \varGamma_b^* defined as follows:

 $\begin{array}{lll} \text{Game } \varGamma_b^* & \text{Oracle}\\ 1: \ \mathcal{B}_1() \xrightarrow{\$} (m_0, m_1, \mathsf{st}) & 1: \text{ if}\\ 2: \ \textbf{if} \ |m_0| \neq |m_1| \ \textbf{then return } 0 & 2: \ \textbf{re}\\ 3: \ \text{pick a random key } k^* & \\ 4: \ c^* \leftarrow E_{k^*}(m_b) & \\ 5: \ \mathcal{B}_2^{\text{OD}}(\mathsf{st}, c^*) \xrightarrow{\$} z & \\ 6: \ \textbf{return } z & \end{array}$

Oracle OD(c): 1: if $c = c^*$ then return \perp 2: return $D_{k^*}(c)$ Prove that if E/D is secure, then $\Pr[\Gamma_1'' \to 1] - \Pr[\Gamma_0'' \to 1]$ is negligible.

Given the adversary $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ playing in Γ_0'' and Γ_1'' , we construct an adversary $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ playing in Γ_0^* and Γ_1^* . $\mathcal{B}_1:$ 1: simulate $\Gamma_{\mathcal{A}}''$ but stop before Step 9 2: set st' = (st, sk, T, Y^*) 3: return (pt_0, pt_1, st') $\mathcal{B}_2(st', c^*):$ 3: simulate $\mathcal{A}_2(st, ct^*) \rightarrow z$ with oracles OH and ODec₂ with a modification in oracle ODec₂: replace $D_{k^*}(c)$ in Step 8 by an oracle call OD(c) to get the result 4: return z Clearly, the simulation is perfect (in the sense that Γ_b^* is obtained from Γ_b'' by

Clearly, the simulation is perfect (in the sense that Γ_b^* is obtained from Γ_b'' by a sequence of bridging steps) and we have $\Pr[\Gamma_b'' \to 1] = \Pr[\Gamma_b^* \to 1]$. We apply the security of E/D to obtain the result.

Q.5 We consider the game Γ'_b from Q.2 and the event F from Q.3. We consider a variant $\overline{\Gamma}_b$ of Γ'_b as follows:

Game $\overline{\Gamma}_b$ Oracle OH(input) 1: $(Y, Z_1, Z_2) \leftarrow input$ 1: Setup $\xrightarrow{\$}$ pp 2: if $Z_1 = Y^{x_1}$ and $Z_2 = Y^{x_2}$ then 2: Gen(pp) $\xrightarrow{\$}$ (pk, sk) if Good(Y) undefined then 3: 3: $(\mathsf{pp}, X_1, X_2) \leftarrow \mathsf{pk}, (\mathsf{pp}, x_1, x_2) \leftarrow \mathsf{sk}$ pick Good(Y) at random 4: 4: initialize associative arrays Good and T to 5:end if empty return Good(Y)6: 5: $\mathcal{A}_1^{\mathsf{OH},\mathsf{ODec}_1}(\mathsf{pk}) \xrightarrow{\$} (\mathsf{pt}_0,\mathsf{pt}_1,\mathsf{st})$ 7: else 6: if $|\mathsf{pt}_0| \neq |\mathsf{pt}_1|$ then return 0 if T(input) is not defined then 8: 7: pick $y^* \in \mathbf{Z}_q$ 9: pick T(input) at random 8: $Y^* \leftarrow g^{y^*}, Z_1^* \leftarrow X_1^{y^*}, Z_2^* \leftarrow X_2^{y^*}$ 9: $k^* \leftarrow \mathsf{OH}(Y^*, Z_1^*, Z_2^*)$ 10: end if 11: **return** T(input)10: $c^* \leftarrow E_{k^*}(\mathsf{pt}_b)$ 12: end if 11: $ct^* \leftarrow (Y^*, c^*)$ Oracle $ODec_1(ct)$: 12: $\mathcal{A}_2^{\mathsf{OH},\mathsf{ODec}_2}(\mathsf{st},\mathsf{ct}^*) \xrightarrow{\$} z$ 13: return Dec^{OH}(sk, ct) 13: return zOracle $ODec_2(ct)$: 14: $(Y, c) \leftarrow \mathsf{ct}$ 15: if $(Y, c) = \mathsf{ct}^*$ then return \bot 16: if $Y = Y^*$ then return $D_{k^*}(c)$ 17: **return** $Dec^{OH}(sk, ct)$

We define the event \overline{F} in $\overline{\Gamma}_b$ as the event F in Γ'_b . Prove that $\Pr[\overline{\Gamma}_b \to 1] = \Pr[\Gamma'_b \to 1]$ and that $\Pr[F] = \Pr[\overline{F}]$.

The only change is in setting up a new array Good and in a new OH oracle. We can see that OH only treats differently the inputs (Y, Z_1, Z_2) of the form (Y, Y^{x_1}, Y^{x_2}) . For each Y, there is one and only one triplet of this form. It does not matter if we store the output k in T or in Good. Hence, OH implements a random oracle as well. Q.6 We define the Strong Twin Diffie-Hellman game as follows:

Game STDH: 1: Setup $\stackrel{\$}{\to}$ pp 2: pick $x_1, x_2 \in \mathbb{Z}_q$ 3: $X_1 \leftarrow g^{x_1}, X_2 \leftarrow g^{x_2}$ 4: pick $y^* \in \mathbb{Z}_q$ 5: $Y^* \leftarrow g^{y^*}, Z_1^* \leftarrow X_1^{y^*}, Z_2^* \leftarrow X_2^{y^*}$ 6: $\mathcal{C}^{\text{ODTDH}}(\text{pp}, X_1, X_2, Y^*) \stackrel{\$}{\to} (Z_1, Z_2)$ 7: return $1_{Z_1 = Z_1^*, Z_2 = Z_1^*}$ Oracle ODTDH (Y, Z_1, Z_2) : 1: return $1_{Z_1 = Y^*, Z_2 = Z_1^*}$

We consider the game $\overline{\Gamma}_b$ and the event \overline{F} . Given an adversary \mathcal{A} playing the $\overline{\Gamma}_b$ game, construct an adversary \mathcal{C} playing the STDH game such that

$$\Pr[\overline{F}] = \Pr[\mathsf{STDH}_{\mathcal{C}} \to 1]$$

HINT: find a way to simulate $\overline{\Gamma}_b$ without sk.

We define \mathcal{C} by simulating the game Γ'_b until the solution is found. $\mathcal{C}_i(\mathsf{pp}, X_1, X_2, Y^*)$ Oracle OH(input) 1: $\mathsf{pk} \leftarrow (\mathsf{pp}, X_1, X_2)$ 1: $(Y, Z_1, Z_2) \leftarrow input$ 2: if $ODTDH(Y, Z_1, Z_2) = 1$ then *2:* Result $\leftarrow \bot$ 3: simulate $\overline{\Gamma}_b$ from Step 4 3:if $Y = Y^*$ then Result $\leftarrow (Z_1, Z_2)$ - use OD(ct) at Dec^{OH}(sk, ct) if Good(Y) undefined then the place of4: $pick \operatorname{Good}(Y) at random$ 5: - use a new OH end if 6: 4: return Result γ : $return \operatorname{Good}(Y)$ 8: else Oracle OD(ct): 9: if T(input) is not defined then 5: $(Y, c) \leftarrow \mathsf{ct}$ pick T(input) at random 10: 6: if Good(Y) undefined then 11: end if $pick \operatorname{Good}(Y)$ at random γ : return T(input) 12:8: end if13: end if 9: $Good(Y) \rightarrow k$ 10: return $D_k(c)$

The only change in the simulation is that Dec is simulated without knowing sk by using the Good array. There are also two changes in OH:

- the test of Step 2 is simulated by $ODTDH(Y, Z_1, Z_2) = 1$, which is a perfect simulation without knowing sk.

- the extra Step 3 stores something in Result which was not used before. The simulation is perfect. Hence, the game $\overline{\Gamma}_b$ executes the same. When \overline{F} happens, we can see in OH that the (Z_1, Z_2) value corresponding to Y^* is stored in Result. As a matter of fact, this is precisely the answer to the STDH problem. Hence, $\Pr[\overline{F}] = \Pr[STDH_{\mathcal{C}} \to 1]$.

Q.7 Summarize all what we did and prove that the cryptosystem is IND-CCA secure in the random oracle model, under the assumption that the strong twin Diffie-Hellman problem STDH is hard and that the E/D scheme is secure.

NOTE: in a twin exercise, we show STDH is equivalent to CDH.

We have - for all $b \in \{0,1\}$, $\Pr[\Gamma_b \to 1] = \Pr[\Gamma'_b \to 1]$, - for all $b \in \{0,1\}$, $|\Pr[\Gamma'_b \to 1] - \Pr[\Gamma''_b \to 1]| \leq \Pr[F]$, - $\Pr[F] = \Pr[\overline{F}]$, - $\Pr[\overline{F}] = \Pr[\mathsf{STDH} \to 1]$, - $|\Pr[\Gamma''_1 \to 1] - \Pr[\Gamma''_0 \to 1]| \leq |\Pr[\Gamma_1^* \to 1] - \Pr[\Gamma_0^* \to 1]|$. Hence, $|\Pr[\Gamma_1 \to 1] - \Pr[\Gamma_0 \to 1]| \leq 2\Pr[\mathsf{STDH} \to 1] + |\Pr[\Gamma_1^* \to 1] - \Pr[\Gamma_0^* \to 1]|$ which is negligible, assuming that the strong twin Diffie-Hellman problem is hard and that E/D is secure. This means that the cryptosystem is IND-CCA secure.

3 Equivalence of CDH and the Strong Twin DH Problems

Note: this is a twin exercise of "An IND-CCA Variant of the ElGamal Cryptosystem". However, both exercises are totally independent.

This exercise is inspired from Cash-Kiltz-Shoup, The Twin Diffie-Hellman Problem and Applications, EUROCRYPT 2008, LNCS vol. 4965, Springer.

We define the Strong Twin Diffie-Hellman STDH game and the classical CDH game as follows:

Game STDH: Game CDH 1: Setup $\xrightarrow{\mathfrak{d}}$ pp 1: Setup $\xrightarrow{\mathfrak{D}}$ pp 2: pick $x_1, x_2 \in \mathbf{Z}_q$ 2: pick $x, y \in \mathbf{Z}_q$ 3: $X_1 \leftarrow g^{x_1}, X_2 \leftarrow g^{x_2}$ 3: $X \leftarrow g^x, Y \leftarrow g^y$ 4: pick $y^* \in \mathbf{Z}_q$ 4: $\mathcal{B}(pp, X, Y) \xrightarrow{\$} Z$ 5: $Y^* \leftarrow g^{y^*}, Z_1^* \leftarrow X_1^{y^*}, Z_2^* \leftarrow X_2^{y^*}$ 5: return $1_{Z=Y^x}$ 6: $\mathcal{A}^{\mathsf{ODTDH}}(\mathsf{pp}, X_1, X_2, Y^*) \xrightarrow{\$} (Z_1, Z_2)$ 7: return $1_{Z_1=Z_1^*,Z_2=Z_2^*}$ Oracle $\mathsf{ODTDH}(Y, Z_1, Z_2)$: 8: return $1_{Z_1=Y^{x_1} \wedge Z_2=Y^{x_2}}$

Our goal is to prove the equivalence between the two problems.

Here, $\operatorname{Setup}(1^s) \to \operatorname{pp}$ is an algorithm which generates a group G and its prime order q in some public parameters pp. Given pp, we can extract q, the neutral element 1, a generator g, and parameters to be able to make multiplications in polyomially bounded time. We assume that group elements have a unique representation.

Q.1 Given an adversary \mathcal{B} playing the CDH game, construct and adversary \mathcal{A} playing the STDH game such that $\Pr[\mathsf{STDH} \to 1] \ge \Pr[\mathsf{CDH} \to 1]^2$.

 $\begin{array}{l} \mathcal{A}(\mathsf{pp}, X_1, X_2, Y^*):\\ 1: \ pick \ r \in \mathbf{Z}_q\\ 2: \ \mathcal{B}(\mathsf{pp}, X_1, Y^*) \xrightarrow{\$} Z_1\\ 3: \ \mathcal{B}(\mathsf{pp}, X_2, Y^*g^r) \xrightarrow{\$} Z\\ 4: \ Z_2 \leftarrow Y^*X_2^{-r}\\ 5: \ return\ (Z_1, Z_2)\\ The \ uniform \ r \in \mathbf{Z}_q \ separates \ the \ two \ runs \ of \ \mathcal{B} \ which \ become \ independent, \ but \ for \ \mathsf{pp}. \ If \ p_{\mathsf{pp}} \ is \ the \ probability \ that \ \mathsf{CDH} \ yields \ 1 \ conditioned \ to \ \mathsf{pp}, \ then \ the \ same \ probability \ for \ \mathsf{STDH} \ is \ p_{\mathsf{pp}}^2. \ Hence, \ the \ probability \ that \ \mathsf{STDH} \ succeeds \ is \ E(p_{\mathsf{pp}}^2). \ Thanks \ to \ the \ Jensen \ inequality, \ this \ is \ greater \ than \ E(p_{\mathsf{pp}})^2. \ Hence, \ \mathsf{Pr}[\mathsf{STDH} \to 1] \geq \mathsf{Pr}[\mathsf{CDH} \to 1]^2. \end{array}$

Q.2 We define the following random variables: $x, u, v, y, z_1, z_2 \in \mathbb{Z}_q$, $x_1 = x$, and $x_2 = v - xu \mod q$. We assume that (x, u, v) is uniformly distributed in \mathbb{Z}_q^3 and that $(y, z_1, z_2) = f(x_1, x_2)$ for some function f.

Q.2a Prove that (x_1, x_2, u) is uniformly distributed in \mathbb{Z}_q^3 .

The function mapping (x, u, v)	to (x_1, x_2, u) is $(x, u, v) \mapsto (x, v - xu, u)$ which
is a permutation of \mathbf{Z}_a^3 . Hence,	(x_1, x_2, u) is also uniform.

Q.2b Prove that

$$\Pr[z_1u + z_2 = yv|z_1 = yx_1, z_2 = yx_2] = 1 \quad , \quad \Pr[z_1u + z_2 = yv|z_1 \neq yx_1 \lor z_2 \neq yx_2] \le \frac{1}{q}$$

1

(where equalities are modulo q).

 $z_1u + z_2 = yv$ is equivalent to

$$(z_1 - yx_1)u + (z_2 - yx_2) = 0$$

Hence, the first equation is quite clear. For the second we recall that x_1, x_2, u are independent and that (y, z_1, z_2) is a function of x_1, x_2 . Hence, u is independent from all the rest. For any values of x_1, x_2 giving $z_1 \neq yx_1$, the probability over u is $\frac{1}{q}$. For any values of x_1, x_2 giving $z_1 = yx_1$ and $z_2 \neq yx_2$, the probability over u is 0. Hence, for any values of x_1, x_2 giving $z_1 \neq yx_1 \lor z_2 \neq yx_2$, the probability over u is at most $\frac{1}{q}$.

Q.3 Given an adversary \mathcal{A} playing the STDH game, prove that the following \mathcal{B} playing the CDH game is such that $\Pr[\mathsf{CDH} \to 1] \ge \Pr[\mathsf{STDH} \to 1] - \frac{Q}{q}$ where Q is the total number of queries of \mathcal{A} .

 $\begin{array}{lll} \mathcal{B}(\mathsf{pp},X,Y) & & \text{Oracle } \mathsf{O}(\hat{Y},\hat{Z}_{1},\hat{Z}_{2}) \\ 1 & \text{pick } u,v \in \mathbf{Z}_{q} & 1 & \text{return } 1_{\hat{Z}_{1}^{u}\hat{Z}_{2}=\hat{Y}^{v}} \\ 2 & X_{1} \leftarrow X, X_{2} \leftarrow g^{v}X^{-u} \\ 3 & \text{simulate } \mathcal{A}(\mathsf{pp},X_{1},X_{2},Y) \xrightarrow{\$} (Z_{1},Z_{2}) \\ & \text{with oracle } \mathsf{O} \text{ instead of } \mathsf{ODTDH} \\ 4 & \text{return } Z_{1} \end{array}$

Let x be the discrete logarithm of X, $x_1 = x$, and $x_2 = v - xu$. The random variables x, r, s are uniform and independent. Let E_i be the event that the ith query to O returns 1 but that either $\hat{Z}_1 \neq \hat{Y}^{x_1}$ or $\hat{Z}_2 \neq \hat{Y}^{x_2}$. Thanks to the previous question, we have $\Pr[E_i] \leq \frac{1}{q}$. Hence, the probability that at least one out of the Q total number of queries produce this failure event is bounded by $\frac{Q}{q}$. Except in this failure case, the simulation is perfect. Hence, using the difference lemma, we obtain the result.