Advanced Cryptography - Final Exam Solution

Serge Vaudenay

26.6.2019

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Minimal Number of Samples to Distinguish Distributions

We consider two probability distributions P_{0} and P_{1} over a set \mathcal{Z}. We denote by $d\left(P_{0}, P_{1}\right)$ the statistical distance between them, which is

$$
d\left(P_{0}, P_{1}\right)=\frac{1}{2} \sum_{z \in \mathcal{Z}}\left|P_{0}(z)-P_{1}(z)\right|
$$

We also define the Hellinger distance

$$
H\left(P_{0}, P_{1}\right)=\sqrt{1-\sum_{z \in \mathcal{Z}} \sqrt{P_{0}(z) P_{1}(z)}}
$$

This is a distance in the sense that we always have $H\left(P_{0}, P_{1}\right) \geq 0, H\left(P_{0}, P_{1}\right)=0 \Longleftrightarrow$ $P_{0}=P_{1}$, and the triangular inequality. We further define the fidelity

$$
F\left(P_{0}, P_{1}\right)=1-H\left(P_{0}, P_{1}\right)^{2}
$$

The Fuchs - van de Graaf inequalities relate d and F as follows

$$
1-F\left(P_{0}, P_{1}\right) \leq d\left(P_{0}, P_{1}\right) \leq \sqrt{1-F\left(P_{0}, P_{1}\right)^{2}}
$$

Given two distributions P and Q, we denote by $P \otimes Q$ the distribution of a pair (X, Y) of independent variables X and Y such that X follows P and Y follows Q. We also denote $P^{\otimes n}=\overbrace{P \otimes \cdots \otimes P}^{n \text { times }}$.

We are interested in distinguishing the two distributions based on a vector of n i.i.d. samples following one or the other distribution. Given a real number $t \in[0,1]$, we let n_{t} be the minimal integer such that there exists a distinguisher using n_{t} samples with advantage at least t.
Q. 1 By using an easy bound on the statistical distance, show that for all t, we have

$$
n_{t} \geq \frac{t}{d\left(P_{0}, P_{1}\right)}
$$

Let \mathcal{A} be a distinguisher using n_{t} samples with advantage at least t. Due to the link between advantage and statistical distance, we have $\operatorname{Adv}(\mathcal{A}) \leq$ $d\left(P_{0}^{\otimes n_{t}}, P_{1}^{\otimes n_{t}}\right)$, where $P^{\otimes n}$ denotes the distribution of a vector of n i.i.d. random variables of distribution P. The easy bound on statistical distance says $d\left(P_{0}^{\otimes n}, P_{1}^{\otimes n}\right) \leq n \cdot d\left(P_{0}, P_{1}\right)$. Hence,

$$
t \leq \operatorname{Adv}(\mathcal{A}) \leq d\left(P_{0}^{\otimes n_{t}}, P_{1}^{\otimes n_{t}}\right) \leq n_{t} \cdot d\left(P_{0}, P_{1}\right)
$$

We deduce $n_{t} \geq \frac{t}{d\left(P_{0}, P_{1}\right)}$.
Q. 2 Prove that $F\left(P_{0}^{\otimes n}, P_{1}^{\otimes n}\right)=F\left(P_{0}, P_{1}\right)^{n}$.

HINT: first prove $F\left(P_{0} \otimes Q_{0}, P_{1} \otimes Q_{1}\right)=F\left(P_{0}, P_{1}\right) F\left(Q_{0}, Q_{1}\right)$.

We have

$$
F\left(P_{0}, P_{1}\right)=1-H\left(P_{0}, P_{1}\right)^{2}=\sum_{z \in \mathcal{Z}} \sqrt{P_{0}(z) P_{1}(z)}
$$

Hence,

$$
\begin{aligned}
F\left(P_{0} \otimes Q_{0}, P_{1} \otimes Q_{1}\right) & =\sum_{\left(z_{1}, z_{2}\right) \in \mathcal{Z}_{1} \times \mathcal{Z}_{2}} \sqrt{P_{0}\left(z_{1}\right) Q_{0}\left(z_{2}\right) P_{1}\left(z_{1}\right) Q_{1}\left(z_{2}\right)} \\
& =\sum_{z_{1} \in \mathcal{Z}_{1}} \sqrt{P_{0}\left(z_{1}\right) P_{1}\left(z_{1}\right)} \sum_{z_{2} \in \mathcal{Z}_{2}} \sqrt{Q_{0}\left(z_{2}\right) Q_{1}\left(z_{2}\right)} \\
& =F\left(P_{0}, P_{1}\right) F\left(Q_{0}, Q_{1}\right)
\end{aligned}
$$

By induction, we deduce $F\left(P_{0}^{\otimes n}, P_{1}^{\otimes n}\right)=F\left(P_{0}, P_{1}\right)^{n}$.
Q. 3 By writing $D_{1 / 2}\left(P_{0} \| P_{1}\right)=-2 \cdot \log _{2} F\left(P_{0}, P_{1}\right)$, prove that

$$
n_{t} \geq \frac{-\log _{2}\left(1-t^{2}\right)}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}
$$

HINT: use the same technique as in Q. 1 but get rid of d.

Using the same technique as Q.1, we have

$$
t \leq \operatorname{Adv}(\mathcal{A}) \leq d\left(P_{0}^{\otimes n_{t}}, P_{1}^{\otimes n_{t}}\right)
$$

We now use the upper bound of d in terms of F to obtain

$$
t \leq d\left(P_{0}^{\otimes n_{t}}, P_{1}^{\otimes n_{t}}\right) \leq \sqrt{1-F\left(P_{0}^{\otimes n_{t}}, P_{1}^{\otimes n_{t}}\right)^{2}}
$$

and, with the multiplicativity of F :

$$
t \leq \sqrt{1-F\left(P_{0}, P_{1}\right)^{2 n_{t}}}
$$

Hence

$$
n_{t} \geq \frac{\ln \left(1-t^{2}\right)}{2 \cdot \ln F\left(P_{0}, P_{1}\right)}=\frac{-\log _{2}\left(1-t^{2}\right)}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}
$$

Q. 4 Complete the previous bound by proving

$$
\frac{-\log _{2}\left(1-t^{2}\right)}{D_{1 / 2}\left(P_{0} \| P_{1}\right)} \leq n_{t}<1+\frac{-2 \cdot \log _{2}(1-t)}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}
$$

HINT: use the second Fuchs - van de Graaf inequality.
We take the best distinguisher \mathcal{B} based on $n_{t}-1$ samples, we have $\operatorname{Adv}(\mathcal{B})=$ $d\left(P_{0}^{\otimes n_{t}-1}, P_{1}^{\otimes n_{t}-1}\right)$ and $\operatorname{Adv}(\mathcal{B}) \leq t$. Hence,

$$
t \geq \operatorname{Adv}(\mathcal{B})=d\left(P_{0}^{\otimes n_{t}-1}, P_{1}^{\otimes n_{t}-1}\right)
$$

We use the lower bound of d in terms of F to obtain

$$
t>d\left(P_{0}^{\otimes n_{t}-1}, P_{1}^{\otimes n_{t}-1}\right) \geq 1-F\left(P_{0}^{\otimes n_{t}-1}, P_{1}^{\otimes n_{t}-1}\right)
$$

and, with the multiplicativity of F :

$$
t>1-F\left(P_{0}, P_{1}\right)^{n_{t}-1}
$$

Hence

$$
n_{t}<1+\frac{\ln (1-t)}{\ln F\left(P_{0}, P_{1}\right)}=1+\frac{-2 \cdot \log _{2}(1-t)}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}
$$

Q. 5 Prove that the minimum number n of samples to distinguish P_{0} from P_{1} with advantage at least $\frac{1}{2}$ is such that

$$
\frac{0.41}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}<n<1+\frac{2}{D_{1 / 2}\left(P_{0} \| P_{1}\right)}
$$

We apply the previous bound with $t=\frac{1}{2}$ and see that $\log _{2}(1-t)=-1$ and $-\log _{2}\left(1-t^{2}\right)>0.41$.

2 An IND-CCA Variant of the ElGamal Cryptosytem

> | This exercise is inspired from Cash-Kiltz-Shoup, The Twin Diffie-Hellman |
| :--- |
| Problem and Applications, EUROCRYPT 2008, LNCS vol. 4965, Springer. |

Given a key derivation function H and a correct symmetric encryption scheme E / D which can be computed in polynomial time, we define the following cryptosystem:
$\operatorname{Setup}\left(1^{s}\right) \rightarrow \mathrm{pp}$: generate a group G and its prime order q and define some public parameters pp from which we can extract s, q, the neutral element 1 , a generator g, and parameters to be able to make multiplications in polyomially bounded time in terms of s. We assume that group elements have a unique representation.
Gen $(\mathrm{pp}) \rightarrow \mathrm{pk}$, sk: pick $x_{1}, x_{2} \in \mathbf{Z}_{q}$, compute $X_{1}=g^{x_{1}}, X_{2}=g^{x_{2}}$, and define $\mathrm{pk}=$ $\left(\mathrm{pp}, X_{1}, X_{2}\right), \mathrm{sk}=\left(\mathrm{pp}, x_{1}, x_{2}\right)$.
$\operatorname{Enc}(\mathrm{pk}, m) \rightarrow \mathrm{ct}:$ pick $y \in \mathbf{Z}_{q}$, compute $Y=g^{y}, Z_{1}=X_{1}^{y}, Z_{2}=X_{2}^{y}, k=H\left(Y, Z_{1}, Z_{2}\right)$, $c=E_{k}(m)$, and define $c t=(Y, c)$.
$\operatorname{Dec}(\mathrm{sk}, \mathrm{ct}) \rightarrow m:$ [to be defined]
We want to prove the IND-CCA security in the random oracle model, which is defined by the following game Γ_{b} with an adversary \mathcal{A} and the bit b :

Game Γ_{b}	Oracle OH (input)
1: pick a function H at random	1: return H (input)
2: Setup $\xrightarrow{\text { ¢ }} \mathrm{pp}$	Oracle $\mathrm{ODec}_{1}(\mathrm{ct})$:
3: $\mathrm{Gen}(\mathrm{pp}) \xrightarrow{\Phi}$ (pk, sk)	2: return $\mathrm{Dec}^{\text {OH }}$ (sk, ct)
4: $\mathcal{A}_{1}^{\text {OH, } \mathrm{ODec}_{1}}(\mathrm{pk}) \xrightarrow{\Phi}\left(\mathrm{pt}_{0}, \mathrm{pt}_{1}, \mathrm{st}\right)$	Oracle $\mathrm{ODec}_{2}(\mathrm{ct})$:
5: if $\left\|\mathrm{pt}_{0}\right\| \neq\left\|\mathrm{pt}_{1}\right\|$ then return 0	3: if $\mathrm{ct}=\mathrm{ct}^{*}$ then return \perp
6: $\mathrm{ct}^{*} \stackrel{\$}{\leftarrow} \mathrm{Enc}^{\text {OH }}$ (pk, pt_{b})	4: return $\mathrm{Dec}^{\text {OH }}$ (sk, ct)
8: return z	

Q. 1 Describe the decryption algorithm and prove that we have a correct public-key cryptosystem.

Decryption of ciphertext (Y, c) with secret key $\left(x_{1}, x_{2}\right)$ works as follows: We compute $Y^{x_{1}}=Z_{1}^{\prime}, Y^{x_{2}}=Z_{2}^{\prime}, H\left(Y, Z_{1}^{\prime}, Z_{2}^{\prime}\right)=k^{\prime}$, and finally $D_{k^{\prime}}(c)=m^{\prime}$.
Since we can do multiplications in polynomial time, we can exponentiate in polynomial time using the square-and-multiply algorithm. Hence, we have a public-key cryptosystem.
We have $Z_{1}^{\prime}=Y^{x_{1}}=g^{y x_{1}}=X_{1}^{y}=Z_{1}, Z_{2}^{\prime}=Y^{x_{2}}=g^{y x_{2}}=X_{2}^{y}=Z_{2}$, so $k^{\prime}=H\left(Y, Z_{1}, Z_{2}\right)=k$, and finally $m^{\prime}=D_{k}(c)=m$ due to the correctness of the E / D scheme. Hence, the cryptosystem is correct.
Q. 2 Let Γ_{b}^{\prime} be the following variant of Γ_{b} :

```
Game }\mp@subsup{\Gamma}{b}{\prime
    1: Setup \xrightarrow{}{$}\textrm{pp}
    Gen(pp)\xrightarrow{}{s}(pk, sk)
    3: (pp, X1, X2)}\leftarrow\textrm{pk
    4: initialize associative array T to empty
5: }\mp@subsup{\mathcal{A}}{1}{\mp@subsup{\textrm{OH},\mp@subsup{\textrm{ODec}}{1}{}}{(pk}{(p)}}\xrightarrow{}{$}(\mp@subsup{\textrm{pt}}{0}{},\mp@subsup{\textrm{pt}}{1}{},\textrm{st}
6: if }|\mp@subsup{\textrm{pt}}{0}{}|\not=|\mp@subsup{\textrm{pt}}{1}{}|\mathrm{ then return 0
7: pick }\mp@subsup{y}{}{*}\in\mp@subsup{\mathbf{Z}}{q}{
8: }\mp@subsup{Y}{}{*}\leftarrow\mp@subsup{g}{}{\mp@subsup{y}{}{*}},\mp@subsup{Z}{1}{*}\leftarrow\mp@subsup{X}{1}{\mp@subsup{y}{}{*}},\mp@subsup{Z}{2}{*}\leftarrow\mp@subsup{X}{2}{\mp@subsup{y}{}{*}
9: }\mp@subsup{k}{}{*}\leftarrow\textrm{OH}(\mp@subsup{Y}{}{*},\mp@subsup{Z}{1}{*},\mp@subsup{Z}{2}{*}
10: c** }\leftarrow\mp@subsup{E}{\mp@subsup{k}{}{*}}{}(\mp@subsup{\textrm{pt}}{b}{}
11: ct**}\leftarrow(\mp@subsup{Y}{}{*},\mp@subsup{c}{}{*}
12: }\mp@subsup{\mathcal{A}}{2}{\textrm{OH},\mp@subsup{\textrm{ODec}}{2}{}}(\textrm{st},\mp@subsup{\textrm{ct}}{}{*})\xrightarrow{}{$}
13: return z
```

Prove that $\operatorname{Pr}\left[\Gamma_{b} \rightarrow 1\right]=\operatorname{Pr}\left[\Gamma_{b}^{\prime} \rightarrow 1\right]$ for all b.
The difference between Γ_{b} and Γ_{b}^{\prime} is in

- expanding Enc in the game to define the variables Y^{*} and k^{*};
- the simulation of OH by the lazy sampling technique;
- Step 8 of ODec_{2}.

All those changes induce no behavior modification. These are bridging steps.
Q. 3 Let $\Gamma_{b}^{\prime \prime}$ be a variant of Γ_{b}^{\prime} in which Step 9 of the game is replaced by 9: pick k^{*} at random
We define the failure event F that OH is queried with input $\left(Y^{*}, Z_{1}^{*}, Z_{2}^{*}\right)$ in Γ_{b}^{\prime} at some time during the game except on Step 9. Prove that $\left|\operatorname{Pr}\left[\Gamma_{b}^{\prime} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{b}^{\prime \prime} \rightarrow 1\right]\right| \leq \operatorname{Pr}[F]$.

> The difference between Γ_{b}^{\prime} and $\Gamma_{b}^{\prime \prime}$ is that T is not used any more in Step 9. Hence, $T\left(Y^{*}, Z_{1}^{*}, Z_{2}^{*}\right.$) is neither set nor checked. If F never occurs, $T\left(Y^{*}, Z_{1}^{*}, Z_{2}^{*}\right)$ is never used anywhere else. This, it is the same to query H with $\left(Y^{*}, Z_{1}^{*}, Z_{2}^{*}\right)$ and to pick a random k^{*}. Hence, Γ_{b}^{\prime} and $\Gamma_{b}^{\prime \prime}$ are identical when F does not occur. Due to the difference lemma, we obtain $\mid \operatorname{Pr}\left[\Gamma_{b}^{\prime} \rightarrow\right.$ $1]-\operatorname{Pr}\left[\Gamma_{b}^{\prime \prime} \rightarrow 1\right] \mid \leq \operatorname{Pr}[F]$.
Q. 4 We say that E / D is secure if for any PPT algorithm \mathcal{B}, the advantage

$$
\operatorname{Adv}_{\mathcal{B}}=\operatorname{Pr}\left[\Gamma_{1}^{*} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}^{*} \rightarrow 1\right]
$$

is negligible, with Γ_{b}^{*} defined as follows:

Game Γ_{b}^{*}	Oracle $\mathrm{OD}(c):$
1: $\mathcal{B}_{1}() \xrightarrow{\Phi}\left(m_{0}, m_{1}\right.$, st $)$	1: if $c=c^{*}$ then return \perp
2: if $\left\|m_{0}\right\| \neq\left\|m_{1}\right\|$ then return 0	2: return $D_{k^{*}}(c)$
3: pick a random key k^{*}	
4: $c^{*} \leftarrow E_{k^{*}}\left(m_{b}\right)$	
5: $\mathcal{B}_{2}^{\text {OD }\left(\text { st }, c^{*}\right) \xrightarrow{\Phi} z}$	
6: return z	

Prove that if E / D is secure, then $\operatorname{Pr}\left[\Gamma_{1}^{\prime \prime} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}^{\prime \prime} \rightarrow 1\right]$ is negligible.
Given the adversary $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ playing in $\Gamma_{0}^{\prime \prime}$ and $\Gamma_{1}^{\prime \prime}$, we construct an adversary $\mathcal{B}=\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ playing in Γ_{0}^{*} and Γ_{1}^{*}.

```
\mathcal{B}
    1: simulate \Gamma 兊 but stop before Step 9}
    2: set st'}=(\textrm{st},\textrm{sk},T,\mp@subsup{Y}{}{*}
    3: return (pt },\mp@subsup{\textrm{pt}}{1}{},\mp@subsup{\textrm{st}}{}{\prime}
\mathcal{B}}\mp@subsup{\mp@code{(st}}{}{\prime},\mp@subsup{c}{}{*})
    1: st' }->\mathrm{ (st, sk,T, Y*)
    2: ct*}\leftarrow(\mp@subsup{Y}{}{*},\mp@subsup{c}{}{*}
    3: simulate }\mp@subsup{\mathcal{A}}{2}{}(\textrm{st},\mp@subsup{\textrm{ct}}{}{*})->z\mathrm{ with oracles }\textrm{OH
        and }\mp@subsup{\textrm{ODec}}{2}{}\mathrm{ with a modification in oracle
        ODec}2\mathrm{ : replace }\mp@subsup{D}{\mp@subsup{k}{}{*}}{}(c)\mathrm{ in Step }8\mathrm{ by an or-
        acle call OD(c) to get the result
    4: return z
```

Clearly, the simulation is perfect (in the sense that Γ_{b}^{*} is obtained from $\Gamma_{b}^{\prime \prime}$ by a sequence of bridging steps) and we have $\operatorname{Pr}\left[\Gamma_{b}^{\prime \prime} \rightarrow 1\right]=\operatorname{Pr}\left[\Gamma_{b}^{*} \rightarrow 1\right]$. We apply the security of E / D to obtain the result.
Q. 5 We consider the game Γ_{b}^{\prime} from Q. 2 and the event F from Q.3. We consider a variant $\bar{\Gamma}_{b}$ of Γ_{b}^{\prime} as follows:

Game $\bar{\Gamma}_{b}$	Oracle OH (input)
1: Setup $\xrightarrow{\$} \mathrm{pp}$	1: $\left(Y, Z_{1}, Z_{2}\right) \leftarrow$ input
2: $\mathrm{Gen}(\mathrm{pp}) \xrightarrow{\Phi}(\mathrm{pk}, \mathrm{sk})$	2: if $Z_{1}=Y^{x_{1}}$ and $Z_{2}=Y^{x_{2}}$ then
3: $\left(\mathrm{pp}, X_{1}, X_{2}\right) \leftarrow \mathrm{pk},\left(\mathrm{pp}, x_{1}, x_{2}\right) \leftarrow \mathrm{sk}$	3: if $\operatorname{Good}(Y)$ undefined then
4: initialize associative arrays Good and T to empty	$\begin{array}{ll}\text { 4: } & \text { pick } \operatorname{Good}(Y) \text { at random } \\ \text { 5: } & \text { end if }\end{array}$
$5: \mathcal{A}_{1}^{\text {OH, } \mathrm{ODec}_{1}}(\mathrm{pk}) \xrightarrow{\Phi}\left(\mathrm{pt}_{0}, \mathrm{pt}_{1}, \mathrm{st}\right)$	6: return Good (Y)
6: if $\left\|\mathrm{pt}_{0}\right\| \neq\left\|\mathrm{pt}_{1}\right\|$ then return 0	8: \quad if T (input) is not defined then
7: pick $y^{*} \in \mathbf{Z}_{q}$	9: pick T (input) at random
8: $Y^{*} \leftarrow g^{y^{*}}, Z_{1}^{*} \leftarrow X_{1}^{y^{*}}, Z_{2}^{*} \leftarrow X_{2}^{y^{*}}$	10: end if
9: $k^{*} \leftarrow \mathrm{OH}\left(Y^{*}, Z_{1}^{*}, Z_{2}^{*}\right)$	11: return T (input)
10: $c^{*} \leftarrow E_{k^{*}}\left(\mathrm{pt}_{b}\right)$	12: end if
11: $\mathrm{ct}^{*} \leftarrow\left(Y^{*}, c^{*}\right)$	
12: $\mathcal{A}_{2}^{\text {OH,ODec }}$ 2 $\left(\mathrm{st}, \mathrm{ct}^{*}\right) \xrightarrow{\text { d }} z$	Oracle $\mathrm{ODec}_{1}(\mathrm{ct})$:
13: return z	13: return $\mathrm{Dec}^{\mathrm{OH}}$ (sk, ct)
	Oracle $\mathrm{ODec}_{2}(\mathrm{ct})$:
	14: $(Y, c) \leftarrow \mathrm{ct}$
	15: if $(Y, c)=\mathrm{ct}^{*}$ then return \perp
	16: if $Y=Y^{*}$ then return $D_{k^{*}}(c)$
	17: return $\mathrm{Dec}^{\text {OH }}$ (sk, ct)

We define the event \bar{F} in $\bar{\Gamma}_{b}$ as the event F in Γ_{b}^{\prime}. Prove that $\operatorname{Pr}\left[\bar{\Gamma}_{b} \rightarrow 1\right]=\operatorname{Pr}\left[\Gamma_{b}^{\prime} \rightarrow 1\right]$ and that $\operatorname{Pr}[F]=\operatorname{Pr}[\bar{F}]$.

The only change is in setting up a new array Good and in a new OH oracle. We can see that OH only treats differently the inputs $\left(Y, Z_{1}, Z_{2}\right)$ of the form $\left(Y, Y^{x_{1}}, Y^{x_{2}}\right)$. For each Y, there is one and only one triplet of this form. It does not matter if we store the output k in T or in Good. Hence, OH implements a random oracle as well.
Q. 6 We define the Strong Twin Diffie-Hellman game as follows:

```
Game STDH:
Oracle \(\operatorname{ODTDH}\left(Y, Z_{1}, Z_{2}\right)\) :
    Setup \(\xrightarrow{\text { S }} \mathrm{pp}\)
    1: return \(1_{Z_{1}=Y^{x_{1}} \wedge Z_{2}=Y^{x_{2}}}\)
    : pick \(x_{1}, x_{2} \in \mathbf{Z}_{q}\)
    3: \(X_{1} \leftarrow g^{x_{1}}, X_{2} \leftarrow g^{x_{2}}\)
    4: pick \(y^{*} \in \mathbf{Z}_{q}\)
    5: \(Y^{*} \leftarrow g^{y^{*}}, Z_{1}^{*} \leftarrow X_{1}^{y^{*}}, Z_{2}^{*} \leftarrow X_{2}^{y^{*}}\)
    6: \(\mathcal{C}^{\text {ODTDH }}\left(\mathrm{pp}, X_{1}, X_{2}, Y^{*}\right) \xrightarrow{\Phi}\left(Z_{1}, Z_{2}\right)\)
    7: return \(1_{Z_{1}=Z_{1}^{*}, Z_{2}=Z_{2}^{*}}\)
```

We consider the game $\bar{\Gamma}_{b}$ and the event \bar{F}. Given an adversary \mathcal{A} playing the $\bar{\Gamma}_{b}$ game, construct an adversary \mathcal{C} playing the STDH game such that

$$
\operatorname{Pr}[\bar{F}]=\operatorname{Pr}\left[\mathrm{STDH}_{\mathcal{C}} \rightarrow 1\right]
$$

HINT: find a way to simulate $\bar{\Gamma}_{b}$ without sk.

```
We define \(\mathcal{C}\) by simulating the game \(\Gamma_{b}^{\prime}\) until the solution is found.
\(\mathcal{C}_{i}\left(\mathrm{pp}, X_{1}, X_{2}, Y^{*}\right)\)
Oracle OH (input)
    1: \(\mathrm{pk} \leftarrow\left(\mathrm{pp}, X_{1}, X_{2}\right)\)
    1: \(\left(Y, Z_{1}, Z_{2}\right) \leftarrow\) input
        2: Result \(\leftarrow \stackrel{\perp}{\text { 3: simulate } \bar{\Gamma}_{b} \text { from Step } 4}\)
        2: Result \(\leftarrow \perp\)
3: simulate \(\bar{\Gamma}_{b}\) from Step 4
        if \(\operatorname{ODTDH}\left(Y, Z_{1}, Z_{2}\right)=1\) then
            - use \(\mathrm{OD}(\mathrm{ct})\) at the place
                \(\mathrm{Dec}^{\mathrm{OH}}(\mathrm{sk}, \mathrm{ct})\)
                if \(\operatorname{Good}(Y)\) undefined then
            - use a new OH
                pick \(\operatorname{Good}(Y)\) at random
        end if
    4: return Result
        return \(\operatorname{Good}(Y)\)
    Oracle OD(ct):
        else
        if \(T\) (input) is not defined then
        5: \((Y, c) \leftarrow \mathrm{ct}\)
                pick \(T\) (input) at random
        6: if \(\operatorname{Good}(Y)\) undefined then
        end if
                pick \(\operatorname{Good}(Y)\) at random
        return \(T\) (input)
        8: end if
        end if
    9: \(\operatorname{Good}(Y) \rightarrow k\)
    10: return \(D_{k}(c)\)
```

The only change in the simulation is that Dec is simulated without knowing sk by using the Good array. There are also two changes in OH :

- the test of Step 2 is simulated by $\operatorname{ODTDH}\left(Y, Z_{1}, Z_{2}\right)=1$, which is a perfect simulation without knowing sk.
- the extra Step 3 stores something in Result which was not used before.

The simulation is perfect. Hence, the game $\bar{\Gamma}_{b}$ executes the same. When \bar{F} happens, we can see in OH that the $\left(Z_{1}, Z_{2}\right)$ value corresponding to Y^{*} is stored in Result. As a matter of fact, this is precisely the answer to the STDH problem. Hence, $\operatorname{Pr}[\bar{F}]=\operatorname{Pr}\left[\right.$ STDH $\left._{\mathcal{C}} \rightarrow 1\right]$.
Q. 7 Summarize all what we did and prove that the cryptosystem is IND-CCA secure in the random oracle model, under the assumption that the strong twin Diffie-Hellman problem STDH is hard and that the E / D scheme is secure.
NOTE: in a twin exercise, we show STDH is equivalent to CDH.

$$
\begin{array}{|l}
\text { We have } \\
- \text { for all } b \in\{0,1\}, \operatorname{Pr}\left[\Gamma_{b} \rightarrow 1\right]=\operatorname{Pr}\left[\Gamma_{b}^{\prime} \rightarrow 1\right], \\
- \text { for all } b \in\{0,1\},\left|\operatorname{Pr}\left[\Gamma_{b}^{\prime} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{b}^{\prime \prime} \rightarrow 1\right]\right| \leq \operatorname{Pr}[F] \text {, } \\
-\operatorname{Pr}[F]=\operatorname{Pr}[\bar{F}], \\
-\operatorname{Pr}[\bar{F}]=\operatorname{Pr}[\mathrm{STDH} \rightarrow 1], \\
-\left|\operatorname{Pr}\left[\Gamma_{1}^{\prime \prime} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}^{\prime \prime} \rightarrow 1\right]\right| \leq\left|\operatorname{Pr}\left[\Gamma_{1}^{*} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}^{*} \rightarrow 1\right]\right| . \\
\text { Hence, } \\
\left|\operatorname{Pr}\left[\Gamma_{1} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0} \rightarrow 1\right]\right| \leq 2 \operatorname{Pr}[\mathrm{STDH} \rightarrow 1]+\left|\operatorname{Pr}\left[\Gamma_{1}^{*} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{0}^{*} \rightarrow 1\right]\right| \\
\text { which is negligible, assuming that the strong twin Diffie-Hellman problem is } \\
\text { hard and that } E / D \text { is secure. This means that the cryptosystem is } \text { IND-CCA } \\
\text { secure. }
\end{array}
$$

3 Equivalence of CDH and the Strong Twin DH Problems

Note: this is a twin exercise of "An IND-CCA Variant of the ElGamal Cryptosystem". However, both exercises are totally independent.

> | This exercise is inspired from Cash-Kiltz-Shoup, The Twin Diffie-Hellman |
| :--- |
| Problem and Applications, EUROCRYPT 2008, LNCS vol. 4965, Springer. |

We define the Strong Twin Diffie-Hellman STDH game and the classical CDH game as follows:

```
Game STDH:
    1: Setup \(\xrightarrow{\$} p p\)
    2: pick \(x_{1}, x_{2} \in \mathbf{Z}_{q}\)
    3: \(X_{1} \leftarrow g^{x_{1}}, X_{2} \leftarrow g^{x_{2}}\)
    4: pick \(y^{*} \in \mathbf{Z}_{q}\)
    5: \(Y^{*} \leftarrow g^{y^{*}}, Z_{1}^{*} \leftarrow X_{1}^{y^{*}}, Z_{2}^{*} \leftarrow X_{2}^{y^{*}}\)
        Game CDH
    1: Setup \(\xrightarrow{\$} \mathrm{pp}\)
    2: pick \(x, y \in \mathbf{Z}_{q}\)
    3: \(X \leftarrow g^{x}, Y \leftarrow g^{y}\)
    6: \(\mathcal{A}^{\text {ODTDH }}\left(\mathrm{pp}, X_{1}, X_{2}, Y^{*}\right) \xrightarrow{\Phi}\left(Z_{1}, Z_{2}\right)\)
    7: return \(1_{Z_{1}=Z_{1}^{*}, Z_{2}=Z_{2}^{*}}\)
Oracle ODTDH \(\left(Y, Z_{1}, Z_{2}\right)\) :
    8: return \(1_{Z_{1}=Y^{x_{1}} \wedge Z_{2}=Y^{x_{2}}}\)
```

Our goal is to prove the equivalence between the two problems.
Here, $\operatorname{Setup}\left(1^{s}\right) \rightarrow \mathrm{pp}$ is an algorithm which generates a group G and its prime order q in some public parameters pp. Given pp, we can extract q, the neutral element 1, a generator g, and parameters to be able to make multiplications in polyomially bounded time. We assume that group elements have a unique representation.
Q. 1 Given an adversary \mathcal{B} playing the CDH game, construct and adversary \mathcal{A} playing the STDH game such that $\operatorname{Pr}[$ STDH $\rightarrow 1] \geq \operatorname{Pr}[\mathrm{CDH} \rightarrow 1]^{2}$.

```
\(\mathcal{A}\left(\mathrm{pp}, X_{1}, X_{2}, Y^{*}\right):\)
1: pick \(r \in \mathbf{Z}_{q}\)
2: \(\mathcal{B}\left(\mathrm{pp}, X_{1}, Y^{*}\right) \xrightarrow{\text { s. }} Z_{1}\)
3: \(\mathcal{B}\left(\mathrm{pp}, X_{2}, Y^{*} g^{r}\right) \xrightarrow{\stackrel{8}{\rightarrow} Z}\)
4: \(Z_{2} \leftarrow Y^{*} X_{2}^{-r}\)
5: return \(\left(Z_{1}, Z_{2}\right)\)
```

The uniform $r \in \mathbf{Z}_{q}$ separates the two runs of \mathcal{B} which become independent, but for pp. If p_{pp} is the probability that CDH yields 1 conditioned to pp , then the same probability for STDH is p_{pp}^{2}. Hence, the probability that STDH succeeds is $E\left(p_{\mathrm{pp}}^{2}\right)$. Thanks to the Jensen inequality, this is greater than $E\left(p_{\mathrm{pp}}\right)^{2}$. Hence, $\operatorname{Pr}[$ STDH $\rightarrow 1] \geq \operatorname{Pr}[\mathrm{CDH} \rightarrow 1]^{2}$.
Q. 2 We define the following random variables: $x, u, v, y, z_{1}, z_{2} \in \mathbf{Z}_{q}, x_{1}=x$, and $x_{2}=v-$ $x u \bmod q$. We assume that (x, u, v) is uniformly distributed in \mathbf{Z}_{q}^{3} and that $\left(y, z_{1}, z_{2}\right)=$ $f\left(x_{1}, x_{2}\right)$ for some function f.
Q.2a Prove that $\left(x_{1}, x_{2}, u\right)$ is uniformly distributed in \mathbf{Z}_{q}^{3}.

The function mapping (x, u, v) to $\left(x_{1}, x_{2}, u\right)$ is $(x, u, v) \mapsto(x, v-x u, u)$ which is a permutation of \mathbf{Z}_{q}^{3}. Hence, $\left(x_{1}, x_{2}, u\right)$ is also uniform.
Q.2b Prove that

$$
\operatorname{Pr}\left[z_{1} u+z_{2}=y v \mid z_{1}=y x_{1}, z_{2}=y x_{2}\right]=1 \quad, \quad \operatorname{Pr}\left[z_{1} u+z_{2}=y v \mid z_{1} \neq y x_{1} \vee z_{2} \neq y x_{2}\right] \leq \frac{1}{q}
$$

(where equalities are modulo q).

$$
\begin{aligned}
& z_{1} u+z_{2}=y v \text { is equivalent to } \\
& \qquad\left(z_{1}-y x_{1}\right) u+\left(z_{2}-y x_{2}\right)=0
\end{aligned}
$$

Hence, the first equation is quite clear. For the second we recall that x_{1}, x_{2}, u are independent and that $\left(y, z_{1}, z_{2}\right)$ is a function of x_{1}, x_{2}. Hence, u is independent from all the rest. For any values of x_{1}, x_{2} giving $z_{1} \neq y x_{1}$, the probability over u is $\frac{1}{q}$. For any values of x_{1}, x_{2} giving $z_{1}=y x_{1}$ and $z_{2} \neq y x_{2}$, the probability over u is 0 . Hence, for any values of x_{1}, x_{2} giving $z_{1} \neq y x_{1} \vee z_{2} \neq y x_{2}$, the probability over u is at most $\frac{1}{q}$.
Q. 3 Given an adversary \mathcal{A} playing the STDH game, prove that the following \mathcal{B} playing the CDH game is such that $\operatorname{Pr}[\mathrm{CDH} \rightarrow 1] \geq \operatorname{Pr}[\mathrm{STDH} \rightarrow 1]-\frac{Q}{q}$ where Q is the total number of queries of \mathcal{A}.

```
\mathcal{B}(pp,X,Y):
    Oracle O(\hat{Y},\mp@subsup{\hat{Z}}{1}{},\mp@subsup{\hat{Z}}{2}{})
    1: pick }u,v\in\mp@subsup{\mathbf{Z}}{q}{
                                1: return 1}\mp@subsup{\hat{Z}}{1}{u}\mp@subsup{\hat{Z}}{2}{}=\mp@subsup{\hat{Y}}{}{v
    2: }\mp@subsup{X}{1}{}\leftarrowX,\mp@subsup{X}{2}{}\leftarrow\mp@subsup{g}{}{v}\mp@subsup{X}{}{-u
    3: simulate }\mathcal{A}(\textrm{pp},\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},Y)\xrightarrow{}{$}(\mp@subsup{Z}{1}{},\mp@subsup{Z}{2}{}
        with oracle O instead of ODTDH
    4: return }\mp@subsup{Z}{1}{
```

Let x be the discrete logarithm of $X, x_{1}=x$, and $x_{2}=v-x u$. The random variables x, r, s are uniform and independent. Let E_{i} be the event that the ith query to O returns 1 but that either $\hat{Z}_{1} \neq \hat{Y}^{x_{1}}$ or $\hat{Z}_{2} \neq \hat{Y}^{x_{2}}$. Thanks to the previous question, we have $\operatorname{Pr}\left[E_{i}\right] \leq \frac{1}{q}$. Hence, the probability that at least one out of the Q total number of queries produce this failure event is bounded by $\frac{Q}{q}$. Except in this failure case, the simulation is perfect. Hence, using the difference lemma, we obtain the result.

