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– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Security of Key Agreement

We consider a key agreement scheme defined by

– one PPT algorithm setup(1s)→ pp which generates public parameters pp;
– two probabilistic polynomially bounded interactive machines A and B with input pp

and producing a secret output K (denoted by KA for A and by KB for B).

Correctness implies that the following game outputs 1 with probability 1.

1: setup(1s)→ pp
2: make A(pp) and B(pp) interact with each other and output KA and KB

3: output 1KA=KB

Q.1 Give a formal definition for the security against key recovery under passive attacks.
Q.2 Formalize how to define the Diffie-Hellman protocol under this setting.
Q.3 Formally prove that the Diffie-Hellman protocol is secure in the sense of the previous

question if and only if the computational Diffie-Hellman problem is hard.
Q.4 We now consider security against Alice’s key recovery under active attacks as defined

by the following game:

1: setup(1s)→ pp
2: stA ← pp, finishedA ← false
3: stB ← pp, finishedB ← false
4: run AOA,OB(pp)→ K
5: output 1K=KA and finishedA

OA(x):
6: if finishedA then return
7: stA ← (stA, x)
8: run A(stA) to get private output stA

and next message y
9: if y non-final then return y

10: finishedA ← true
11: KA ← stA
12: return y



And the same for oracle OB. Prove that the Diffie-Hellman protocol is insecure in this
sense.

Q.5 Based on some attacks seen in the course, formalize security against key recovery under
active attacks making KA = KB. Prove that Diffie-Hellman is secure by assuming that
the problem defined by the following game is hard:

1: setup(1s)→ pp = (q, g)
2: pick x, y ∈ Z∗

q

3: B(pp, gx, gy)→ (u, v, w)
4: return 1ux=vy=w and u,v,w∈⟨g⟩ and w ̸=1

where g generates ⟨g⟩ of order q, with neutral element 1.

2 Advantage Amplification

LetX1, . . . , Xn, Y1, . . . , Yn be 2n independent Boolean variables. We assume thatX1, . . . , Xn

are identically distributed and that Y1, . . . , Yn are identically distributed. We assume that
the statistical distance between the distributions of Xi and Yj is ε. Given distinguisher,
i.e. a Boolean algorithm A (with unbounded complexity), we define X = A(X1, . . . , Xn)
and Y = A(Y1, . . . , Yn). We are interested in A which maximizes the statistical distance
between the distributions of X and Y . We denote by d the statistical distance and we
identify random variables by their distributions when computing distances, by abuse of
notation.

Q.1 Prove that d(X,Y ) = d((X1, . . . , Xn), (Y1, . . . , Yn)).
Q.2 Assume that Pr[Xi = 1] = 0.
Q.2a Give the distributions of Xi and Yj.
Q.2b Compute d(X,Y ) in terms of ε and n.
Q.2c Give an asymptotic equivalent of the minimal n such that d(X,Y ) ≥ 1

2
in terms of

ε, when ε→ 0.
Q.3 Assume now that Pr[Xi = 1] = 1

2
(1− ε) and Pr[Yi = 1] = 1

2
(1 + ε).

Q.3a Show that A(z1, . . . , zn) = 1z1+···+zn<
n
2
makes d(X,Y ) maximal.

Q.3b Given that Pr[X1 + · · ·+Xn < n
2
] = Pr[Y1 + · · ·+ Yn > n

2
], prove that for n odd, we

have d(X,Y ) = |1− 2Pr[X1 + · · ·+Xn < n
2
]|.

Q.3c Compute the expected value and the variance of X1 + · · ·+Xn.
Q.3d By approximating X1+ · · ·+Xn to a normal distribution, give an asymptotic equiv-

alent to n so that d(X,Y ) is a constant.
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