Advanced Cryptography — Final Exam

Serge Vaudenay

3.8.2019

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Security of Key Agreement

We consider a key agreement scheme defined by

- one PPT algorithm setup $(1^s) \rightarrow pp$ which generates public parameters pp;
- two probabilistic polynomially bounded interactive machines A and B with input pp and producing a secret output K (denoted by K_A for A and by K_B for B).

Correctness implies that the following game outputs 1 with probability 1.

- 1: $\mathsf{setup}(1^s) \to \mathsf{pp}$
- 2: make A(pp) and B(pp) interact with each other and output K_A and K_B
- 3: output $1_{K_A=K_B}$
- Q.1 Give a formal definition for the security against key recovery under passive attacks.
- Q.2 Formalize how to define the Diffie-Hellman protocol under this setting.
- **Q.3** Formally prove that the Diffie-Hellman protocol is secure in the sense of the previous question if and only if the computational Diffie-Hellman problem is hard.
- Q.4 We now consider security against Alice's key recovery under active attacks as defined by the following game:
 - 1: $\mathsf{setup}(1^s) \to \mathsf{pp}$
 - 2: $st_A \leftarrow pp$, finished_A \leftarrow false
 - 3: $st_B \leftarrow pp$, finished_B \leftarrow false
 - 4: run $\mathcal{A}^{OA,OB}(pp) \to K$
 - 5: output $1_{K=K_A}$ and finished_A

OA(x):

- 6: if finished_A then return
- 7: $\mathsf{st}_A \leftarrow (\mathsf{st}_A, x)$
- 8: run $A(\mathsf{st}_A)$ to get private output st_A and next message y
- 9: if y non-final then return y
- 10: $\mathsf{finished}_A \leftarrow \mathsf{true}$
- 11: $K_A \leftarrow \mathsf{st}_A$
- 12: return y

And the same for oracle OB. Prove that the Diffie-Hellman protocol is insecure in this sense.

- **Q.5** Based on some attacks seen in the course, formalize security against key recovery under *active* attacks making $K_A = K_B$. Prove that Diffie-Hellman is secure by assuming that the problem defined by the following game is hard:
 - 1: $\operatorname{setup}(1^s) \to \operatorname{pp} = (q, g)$
 - 2: pick $x, y \in \mathbf{Z}_q^*$
 - 3: $\mathcal{B}(\mathsf{pp}, g^x, g^y) \to (u, v, w)$
 - 4: return $1_{u^x=v^y=w}$ and $u,v,w\in\langle g\rangle$ and $w\neq 1$

where g generates $\langle g \rangle$ of order q, with neutral element 1.

2 Advantage Amplification

Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ be 2n independent Boolean variables. We assume that X_1, \ldots, X_n are identically distributed and that Y_1, \ldots, Y_n are identically distributed. We assume that the statistical distance between the distributions of X_i and Y_j is ε . Given distinguisher, i.e. a Boolean algorithm \mathcal{A} (with unbounded complexity), we define $X = \mathcal{A}(X_1, \ldots, X_n)$ and $Y = \mathcal{A}(Y_1, \ldots, Y_n)$. We are interested in \mathcal{A} which maximizes the statistical distance between the distributions of X and Y. We denote by d the statistical distance and we identify random variables by their distributions when computing distances, by abuse of notation.

- **Q.1** Prove that $d(X, Y) = d((X_1, ..., X_n), (Y_1, ..., Y_n)).$
- **Q.2** Assume that $\Pr[X_i = 1] = 0$.
 - **Q.2a** Give the distributions of X_i and Y_j .
 - **Q.2b** Compute d(X, Y) in terms of ε and n.
 - **Q.2c** Give an asymptotic equivalent of the minimal n such that $d(X, Y) \ge \frac{1}{2}$ in terms of ε , when $\varepsilon \to 0$.
- **Q.3** Assume now that $\Pr[X_i = 1] = \frac{1}{2}(1 \varepsilon)$ and $\Pr[Y_i = 1] = \frac{1}{2}(1 + \varepsilon)$.
 - **Q.3a** Show that $\mathcal{A}(z_1, \ldots, z_n) = 1_{z_1 + \cdots + z_n < \frac{n}{2}}$ makes d(X, Y) maximal.
 - **Q.3b** Given that $\Pr[X_1 + \dots + X_n < \frac{n}{2}] = \Pr[Y_1 + \dots + Y_n > \frac{n}{2}]$, prove that for n odd, we have $d(X, Y) = |1 2\Pr[X_1 + \dots + X_n < \frac{n}{2}]|$.
 - **Q.3c** Compute the expected value and the variance of $X_1 + \cdots + X_n$.
 - **Q.3d** By approximating $X_1 + \cdots + X_n$ to a normal distribution, give an asymptotic equivalent to n so that d(X, Y) is a constant.