
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

30.6.2021

– duration: 3h

– any document allowed

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Encryption Security with a Ciphertext Checking Oracle

We consider the following One-Way under Validity Checking Attack (OW-VCA) game.
The advantage of the adversary is the probability it returns 1.

Game ΓA(1s):
1: Gen(1s) → pk, sk
2: pick pt∗ ∈ Ms at random
3: Enc(pk, pt∗) → ct∗

4: AVCO(pk, ct∗) → z
5: return 1z=pt∗

Oracle VCO(ct)
6: Dec(sk, ct) → x
7: return 1x ̸=⊥

Where s is the security parameter, (Gen,Enc,Dec) is a public-key cryptosystem, Ms is
the plaintext domain, and ⊥ is the special output of Dec indicating that decryption failed.

Q.1 Is PKCS#1 v1.5 secure with respect to this notion?

We have seen in the course that there is an algorithm A such that given a target
ciphertext ct∗ = y, makes some queries pt = sey mod N to the VCO oracle for
some well chosen s and eventually decrypts ct∗. This is the Bleichenbacher
attack. So, PKCS#1 v1.5 is not secure in this model.
Giving a referene to the attack seen in the course was enough to get the points.

Q.2 Propose a definition of KR-VCA security whose goal is key recovery.



Game ΓA(1s):
1: Gen(1s) → pk, sk
2: AVCO(pk) → z
3: return 1z=sk

Oracle VCO(ct)
4: Dec(sk, ct) → x
5: return 1x ̸=⊥

The advantage of the adversary is the probability the game returns 1.
One common mistake was to generate a “target message”, to encrypt it, and
to give it to the adversary. This was useless as the adversary could do it by
himself.

Q.3 We recall the Regev cryptosystem over the plaintext domain M = {0, 1}.
Gen selects a prime number p, integers m and n, a parameter σ � p

m
. Then, it selects

a secret sk ∈ Zn
p and a public key pk = (A, b) satisfying b = A × sk + e mod p, where

A ∈ Zm×n
p is a m× n matrix and e ∈ Zm

p is an error vector which is selected as follows:
for each component i, we sample a real number with normal distribution with mean 0
and standard deviation σ and take ei as its nearest integer.

Enc(pk, pt) picks a vector v ∈ {0, 1}m at random, c1 = vt × A mod p, c2 = pt ×
⌊
p
2

⌋
+

vtb mod p, and returns ct = (c1, c2).

Dec(sk, (c1, c2)) computes d = c2 − c1 × sk mod p then pt′ such that d − pt′ ×
⌊
p
2

⌋
is

congruent to an integer in the [−p
4
,+p

4
] interval modulo p.

Prove that the cryptosystem is correct.

If we follow the protocol, then

c2 = pt
⌊p
2

⌋
+ vtA× sk+ vte mod p

so d = pt
⌊
p
2

⌋
+ vte mod p. vte is the sum of at most m integers rounded

from some normally distributed number of mean 0 and standard deviation σ.
Hence, the order of magnitude of vte is at most mσ. Since σ � p

m
, this is

small compared to p. Hence, we can assume that with high probability, vte
is congruent to an integer in the [−p

4
,+p

4
] interval modulo p. In that case,

decryption yields pt.
To get the points, it was necessary to justify that vte is small. A penalty could
occur if a student said correctness was perfect.

Q.4 Make a successful KR-CCA attack on the Regev cryptosystem.

2



The adversary first encrypts a random plaintext pt into (c1, c2) Then, it queries
(c1, c2 + δ) to the decryption oracle with a chosen δ. The adversary makes a
cut-and-choose algorithm on the value of δ to find the one such that (c1, c2+ δ)
decrypts to the right plaintext but (c1, c2+δ+1) does not. This roughly requires
log2 p queries. It deduces that

c2 + δ − c1 × sk =
⌊p
4

⌋
(mod p)

With this, the adversary deduces sk.
An alternate solution (which was not useful in the next question) was to set
vi = (0, . . . , 0, 1, 0, . . . , 0) on the i-th coordinate and to call the decryption
oracle on ct = (vi, c2) to obtain 1c2−ski∈[− p

4
, p
4 ]
. By trying several c2 (by cut-and-

choose), we get ski.

Q.5 We define a cryptosystem over a domain Ms as follows: Gen is like in the Regev cryp-
tosystem, Enc first computes x = (pt, H(pt)) using a hash function, then encrypt each
of the n bits of x using the Regev cryptosystem to obtain ct = ct1, . . . , ctn. Dec decrypts
the n ciphertexts to obtain n bits x′ which are parsed into x′ = (pt′, h′). If h′ = H(pt′),
then pt′ is returned. Otherwise, ⊥ is returned.
Prove that this cryptosystem is not KR-VCA secure.

We apply the previous attack on the first ciphertext component. When x′
1 = x1,

the VCO oracle returns 1. Otherwise, it returns ⊥. The adversary can deduce
if x′

1 = x1 or x′
1 = 1− x1. This is enough to run the attack.

3



2 Optimal Resistance to Linear Cryptanalysis Modulo 2

This exercise is inspired from Baignères-Junod-Vaudenay, How Far CanWe Go
Beyond Linear Cryptanalysis? , ASIACRYPT 2004, LNCS vol. 3329, Springer.

Let n be an integer. We consider X1, . . . , Xn i.i.d. random variables which are uniform over
Z4. We consider Y independent from X1, . . . , Xn and uniformly distributed in {0, 1}. We
let Xn+1 = Y +X1 + · · ·+Xn mod 4. Finally, X = (X1, . . . , Xn+1) ∈ Zn+1

4 . We write X as
a bitstring of length 2n+ 2 by concatenating the binary representation of the Xi over two
bits. We denote the bits X[1], . . . , X[2n+2]. Hence, X1 = 2X[1]+X[2], X2 = 2X[3]+X[4],

etc. We recall that for a random variable B, we have LP(B) =
(
E((−1)B)

)2
.

The goal of the exercise is to show that although for every balanced linear function
x 7→ a · x from Z2n+2

2 to Z2, the LP bias is very small, there exists a balanced Boolean
function x 7→ f(x) whose LP bias is huge.

Q.1 Let B be the most significant bit of Xn+1 −X1 − · · · −Xn mod 4.
Compute LP(B).

By definition of Xn+1, we have Xn+1 − X1 − · · · − Xn mod 4 = Y . Since
Y ∈ {0, 1}, we have B = 0 all the time. Hence, LP(B) = 1.
A frequent mistake was to say that B was the most significant bit of Y which
was Y itself as it had only one bit. The question meant “the most significant
bit in the 2-bit representation”. If we understand it as “the most significant
bit of the number it represents”, this bit is always 1 unless the number is 0
(which would have indeed be equivalent to Y in this case). It was clearly not
the correct meaning in this question.

Q.2 Let a be a nonzero binary mask over 2n+ 2 bits such that a[2n+ 1] = 0.
Prove that LP(a ·X) = 0.

We have X[2n+2] = Y +X[2]+· · ·+X[2n] mod 2. We assume that a[2n+1] =
0. Hence,

a ·X = (a[1]X[1] + a[3]X[3] + · · ·+ a[2n− 1]X[2n− 1]) +

((a[2] + a[2n+ 2])X[2] + · · ·+ (a[2n] + a[2n+ 2])X[2n]) +

a[2n+ 2]Y (mod 2)

Since X[1], . . . , X[2n], Y are i.i.d. and uniform, a · X mod 2 is an unbiased
random bit so LP(a ·X) = 0.
A common mistake was to use the piling up lemma without caring for the
independence of the random bits.

4



Q.3 Let a be a binary mask over 2n+ 2 bits such that a[2n+ 1] = 1 and a[i] = 0 for some
odd index i.

Prove that LP(a ·X) = 0.

HINT: X[2n+ 1] =
∑

j X[2j − 1] +
∑

j<j′ X[2j]X[2j′] +
∑

j X[2j]Y where j and j′ go
from 1 to n.

The hint comes from the property of the addition X1 + · · · +Xn + Y : we add
all most significant bits of X1, . . . , Xn and the carry which is the sum of the
bi-products of the least significant bits.
We continue the computation in the previous question by adding a[2n +
1]X[2n + 1] and observing that a[i]X[i] = 0 for some odd i. The term a[2n +
1]X[2n+ 1] can be written f(X[i], . . . , X[i− 1], X[i+ 1], . . . , X[2n], Y ) +X[i]
for some Boolean function f . Since X[i] is uniform and independent from the
rest in the sum, then a ·X is unbiased and LP(a ·X) = 0.

Q.4 Let a be a binary mask over 2n+ 2 bits such that a[i] = 1 for every odd index i.

Prove that LP(a ·X) = 2−n−1 for n odd.

HINT: For every n,

(
n−1∑
w=0

(n
w

)
(−1)

w(w−1)
2

)2

= 2n
(
1 + sin

nπ

2

)
.

5



With the computations of the previous questions, we have

a ·X = ((a[2] + a[2n+ 2])X[2] + · · ·+ (a[2n] + a[2n+ 2])X[2n]) +

a[2n+ 2]Y +∑
j<j′

X[2j]X[2j′] +
∑
j

X[2j]Y (mod 2)

By making changes of variable xi = X[2i]+ cte for i = 1, . . . , n and xn+1 = Y ,
we obtain a ·X =

∑
j<j′ xjxj′ + cte with j and j′ from 1 to n+1. The constant

plays no role in the bias. We let Σ =
∑

j<j′ xjxj′.
If w is the sum of all xj (i.e., the number of 1’s), then the number of nonzero

bi-products is Σ = w(w−1)
2

. The value modulo 2 depends of the value of w mod 4.
If w mod 4 ∈ {0, 1}, Σ is even. Otherwise, Σ is odd. Thus,

LP(a ·X) = 2−2n−2

(
n∑

w=0

(
n+ 1

w

)
(−1)

w(w−1)
2

)2

After painful calculus, we obtain the formula of the hint and deduce

LP(a ·X) = 2−n−1

(
1 + sin

(n+ 1)π

2

)
For n odd, sin (n+1)π

2
= 0 so LP(a ·X) = 2−n−1.

Considering that every Z2-linear bit of X has an LP bounded by 2−n, having a
bit B with LP equal to 1 is surprising. We deduce that having all Z2-linear bits
with low LP does not proving any insurance on the nonexistence of a strongly
biased bit.
To prove the hint, we compute

Σu =
n−1∑
w=0

(n
w

)
iuw = (1 + iu)n

We have

(1− i)Σ1 + (1 + i)Σ3

2
=

n−1∑
w=0

(n
w

) (1− i)iw + (1 + i)i−w

2
=

n−1∑
w=0

(n
w

)
(−1)

w(w−1)
2

Hence,

n−1∑
w=0

(n
w

)
(−1)

w(w−1)
2 =

(1− i)(1 + i)n + (1 + i)(1− i)n

2
= Re ((1− i)(1 + i)n)

Since (1− i)(1 + i)n = 2
n+1
2 e(n−1)iπ

4 and cos2(n− 1)π
4
=

1+cos(n−1)π
2

2
=

1+sin nπ
2

2
,

we obtain the result.
6



3 MPC-in-the-Head

Let R be a relation over bitstrings x and w defining an NP language. We assume a multi-
party computation (MPC) with two participants A and B such that

– A and B have as public common input x;

– A and B have respective private inputs wA and wB;

– A and B have as final common output R(x,wA ⊕ wB);

– a malicious participant learns nothing about the private input of honest participants.

We let U(x,wU ; rU) be the protocol run by U ∈ {A,B} and Run(x,A(wA; rA),B(wB; rB))
be the interaction. We will use a commitment scheme Commit.

We define a Σ protocol over the challenge set {A,B} as follows.

– P(x,w) first flips wA, rA, rB, sets wB = wA ⊕ w, then simulates the interaction
Run(x,A(wA; rA),B(wB; rB)). It computes the transcript t (i.e. x and the list of ex-
changed messages) of the protocol.

– It flips kA and kB and computes cA = Commit(wA, rA; kA) and cB = Commit(wB, rB; kB).

– The message a = (t, cA, cB) is sent to V .
– V flips a challenge e ∈ {A,B} and sends it to P .

– P sends z = (we, re, ke).

– V makes a final verification.

Q.1 Describe the final verification of V and prove that the Σ protocol is correct.

The verifier must verify two things: that ce = Commit(we, re; ke) and that run-
ning E(Viewe) for the view reconstructed from (we, re, t) gives the messages
from E in t and finally outputs 1.
When we run the MPC protocol, the algorithm run on the view outputs
R(x,wA ⊕ wB) = R(x,w) = 1 so this is correct.

Q.2 Define an extractor and prove it is correct.

If we have the response to two challenges, we have opening of every commit-
ment. So we have two matching views which correspond to an execution of the
MPC protocol which outputs R(x,wA⊕wB) = 1. We can thus compute a valid
witness wA ⊕ wB.
A common mistake was to prove the correct extraction only with the wA and
wB computed by the honest prover.

Q.3 How would we define a simulator? (An informal argument is fine for this question.)

7



We should first formalize what it means that “a malicious participant learns
nothing about the private input of honest participants”. We take the example of
a malicious A∗. We denote by A∗ the algorithm which says how A∗ acts. This
must be formalized by saying there is a simulator SA∗

B such that the view of
A∗ in the interaction Run(x,A∗(wA; rA),B(wB; rB)) is indistinguishable from
SA∗
B (wA, rA). Then, for the challenge e = A, we define A∗ = A and we compute

the transcript t from SA∗
B (wA, rA) on random wA and rA. We can then commit

to (wA, rA) with a random kA. With a perfectly hiding commitment, we take
cB at random and we can form a = (t, cA, cB) and z = (wA, rA, kA).
For the challenge e = B, the simulation is similar.
A common mistake was to simulate by running the MPC protocol with random
wA and wB. The revealed values does not allow to get both wA and wB but
the obtained views are unfortunately perfectly distinguishable from the correct
views. Indeed, the MPC returns R(x,wA⊕wB) in clear. We cannot even restart
until R returns 1 as it is hard to generate witnesses at random. Trying to
modify messages in the MPC goes back to the problem of simulating a valid
MPC transcript.

8


