Advanced Cryptography - Final Exam

Serge Vaudenay

24.5.2022

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

1Σ Protocol for Discrete Log Equality

We assume that public parameters pp describe a group, how to do operations and comparison in the group, and also give its prime order p. We use additive notation and 0 denotes the neutral element in the group. We define the relation $R((\mathrm{pp}, G, X, Y, Z), x)$ for group elements G, X, Y, Z and an integer x which is true if and only if $G \neq 0, X=x G$, and $Z=x Y$. We construct a Σ-protocol for R with challenge set \mathbf{Z}_{p}. The prover starts by picking $k \in \mathbf{Z}_{p}$ with uniform distribution, computing and sending $A=k G$ and $B=k Y$. Then, the prover gets a challenge $e \in \mathbf{Z}_{p}$. The answer is an integer z to be computed in a way which is a subject of the following question. The final verification is also a subject of the following question. The protocol looks like this:

$$
\begin{gathered}
\begin{array}{c}
\text { Prover } \\
\text { witness: } x \\
(X=x G \text { and } Z=x Y) \\
\text { pick } k \in \mathbf{Z}_{p}
\end{array} \\
\begin{aligned}
\text { instance: }(\mathrm{pp}, G, X, Y, Z)
\end{aligned} \\
\begin{aligned}
& \text { V } \\
& A=k G, B=k Y \text { Verifier } \\
& \text { pick } e \in \mathbf{Z}_{p}
\end{aligned}
\end{gathered}
$$

Q. 1 Inspired by the Schnorr proof, finish the specification of the prover and the verifier.
Q. 2 Specify the extractor and the simulator.
Q. 3 Fully specify another Σ-protocol for the relation $R((\mathrm{pp}, G, X, Y, Z, U, V),(a, b))$ which is true if and only if $U=a G+b Y$ and $V=a X+b Z$.

2 Distinguisher for Lai-Massey Schemes

The Lai-Massey scheme is an alternate construction to the Feistel scheme to build a block cipher from round functions. Let n be the block size and r be the number of rounds. We denote by \oplus the bitwise XOR operation over bistrings. Let the F_{i} be secret functions from
$\{0,1\}^{\frac{n}{2}}$ to itself and π be a fixed public permutation over $\{0,1\}^{\frac{n}{2}}$. Let $x, y \in\{0,1\}^{\frac{n}{2}}$ and $x \| y$ denote the concatenation of the two bitstrings. We define

$$
\varphi\left(F_{1}, \ldots, F_{r}\right)(x \| y)=\varphi\left(F_{2}, \ldots, F_{r}\right)\left(\pi\left(x \oplus F_{1}(x \oplus y)\right) \|\left(y \oplus F_{1}(x \oplus y)\right)\right)
$$

for $r>1$ and

$$
\varphi\left(F_{r}\right)(x \| y)=\left(x \oplus F_{r}(x \oplus y)\right) \|\left(y \oplus F_{r}(x \oplus y)\right)
$$

when there is a single round. In what follows, we assume that the permutation π is defined by

$$
\pi\left(x_{L} \| x_{R}\right)=\left(x_{R} \|\left(x_{L} \oplus x_{R}\right)\right)
$$

where $x_{L}, x_{R} \in\{0,1\}^{\frac{n}{4}}$. For example, a 2-round Lai-Massey scheme is represented as follows:

Q. 1 If $\varphi\left(F_{1}, \ldots, F_{r}\right)$ is the encryption function, what is the decryption function?
Q. 2 Give a distinguisher between $\varphi\left(F_{1}\right)$ and a random permutation with a single known plaintext and advantage close to 1 . (Compute the advantage.)
Q. 3 Give a distinguisher between $\varphi\left(F_{1}, F_{2}\right)$ and a random permutation with two chosen plaintexts and advantage close to 1 . (Compute the advantage.)

3 Bias in the Modulo p Seed

We assume a setup phase $\operatorname{Setup}\left(1^{\lambda}\right) \rightarrow p$ to determine a public prime number p with security parameter λ. We consider the following generators:

Generator $\operatorname{Gen}_{0}\left(1^{\lambda}, p\right)$:	Generator $\operatorname{Gen}_{1}\left(1^{\lambda}, p\right):$	Generator $\operatorname{Gen}_{2}\left(1^{\lambda}, p\right)$:
1: pick $y \in U \mathbf{Z}_{p}$	1: $\ell \leftarrow\left\lceil\log _{2} p\right\rceil$	$1: \ell \leftarrow\left\lceil\log _{2} p\right\rceil$
2: return y	2: pick $x \in U\left\{0,1, \ldots, 2^{\ell}-1\right\}$	2: pick $x \in U\left\{0,1, \ldots, 2^{\ell+\lambda}-1\right\}$
	3: $y \leftarrow x \bmod p$	$3: y \leftarrow x \bmod p$
	4: return y	4: return y

Here, "pick $x \in_{U} E$ " means that we sample x from a set E with uniform distribution. The value ℓ is the bitlength of p. In what follows, we consider distinguishers with unbounded complexity but limited to a single query to a generator.
Q. 1 Estimate how ℓ is usually fixed to have λ-bit security for typical cryptography in a (generic) group of order p. (For instance, in an elliptic curve.)
Q. 2 Compute the advantage of the best distinguisher between Gen_{0} and Gen_{1}. Could it be large?
Q. 3 Compute the advantage of the best distinguisher between Gen_{0} and Gen_{2}. Hint: use the Euclidean division $2^{\ell+\lambda}=q p+r$.
Q. 4 Based on the computations, what do you conclude about the generator algorithms?

