Advanced Cryptography — Final Exam

Serge Vaudenay

24.5.2022

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Σ Protocol for Discrete Log Equality

We assume that public parameters pp describe a group, how to do operations and comparison in the group, and also give its prime order p. We use additive notation and 0 denotes the neutral element in the group. We define the relation R((pp, G, X, Y, Z), x) for group elements G, X, Y, Z and an integer x which is true if and only if $G \neq 0$, X = xG, and Z = xY. We construct a Σ -protocol for R with challenge set \mathbf{Z}_p . The prover starts by picking $k \in \mathbf{Z}_p$ with uniform distribution, computing and sending A = kG and B = kY. Then, the prover gets a challenge $e \in \mathbf{Z}_p$. The answer is an integer z to be computed in a way which is a subject of the following question. The final verification is also a subject of the following question. The protocol looks like this:

$$\begin{array}{ccc} \mathbf{Prover} & \mathbf{Verifier} \\ \text{witness: } x & \text{instance: } (\mathbf{pp}, G, X, Y, Z) \\ (X = xG \text{ and } Z = xY) & \text{pick } k \in \mathbf{Z}_p \\ A = kG, B = kY & \xrightarrow{A,B} \\ \longleftarrow & e \\ ?? & \xrightarrow{z} & ?? \end{array} \xrightarrow{pick \ e \in \mathbf{Z}_p} pick \ e \in \mathbf{Z}_p \end{array}$$

- Q.1 Inspired by the Schnorr proof, finish the specification of the prover and the verifier.
- Q.2 Specify the extractor and the simulator.
- **Q.3** Fully specify another Σ -protocol for the relation $R((\mathsf{pp}, G, X, Y, Z, U, V), (a, b))$ which is true if and only if U = aG + bY and V = aX + bZ.

2 Distinguisher for Lai-Massey Schemes

The Lai-Massey scheme is an alternate construction to the Feistel scheme to build a block cipher from round functions. Let n be the block size and r be the number of rounds. We denote by \oplus the bitwise XOR operation over bistrings. Let the F_i be secret functions from $\{0,1\}^{\frac{n}{2}}$ to itself and π be a fixed public permutation over $\{0,1\}^{\frac{n}{2}}$. Let $x, y \in \{0,1\}^{\frac{n}{2}}$ and $x \parallel y$ denote the concatenation of the two bitstrings. We define

$$\varphi(F_1,\ldots,F_r)(x\|y) = \varphi(F_2,\ldots,F_r)(\pi(x\oplus F_1(x\oplus y))\|(y\oplus F_1(x\oplus y)))$$

for r > 1 and

$$\varphi(F_r)(x||y) = (x \oplus F_r(x \oplus y))||(y \oplus F_r(x \oplus y))$$

when there is a single round. In what follows, we assume that the permutation π is defined by

$$\pi(x_L \| x_R) = (x_R \| (x_L \oplus x_R))$$

where $x_L, x_R \in \{0, 1\}^{\frac{n}{4}}$. For example, a 2-round Lai-Massey scheme is represented as follows:

- **Q.1** If $\varphi(F_1, \ldots, F_r)$ is the encryption function, what is the decryption function?
- **Q.2** Give a distinguisher between $\varphi(F_1)$ and a random permutation with a single known plaintext and advantage close to 1. (Compute the advantage.)
- **Q.3** Give a distinguisher between $\varphi(F_1, F_2)$ and a random permutation with two chosen plaintexts and advantage close to 1. (Compute the advantage.)

3 Bias in the Modulo p Seed

We assume a setup phase $\mathsf{Setup}(1^{\lambda}) \to p$ to determine a public prime number p with security parameter λ . We consider the following generators:

Generator $Gen_0(1^\lambda, p)$:	Generator $Gen_1(1^\lambda, p)$:	Generator $Gen_2(1^\lambda, p)$:
1: pick $y \in_U \mathbf{Z}_p$	1: $\ell \leftarrow \lceil \log_2 p \rceil$	1: $\ell \leftarrow \lceil \log_2 p \rceil$
2: return y	2: pick $x \in U \{0, 1, \dots, 2^{\ell} - 1\}$	2: pick $x \in U \{0, 1, \dots, 2^{\ell+\lambda} - 1\}$
	3: $y \leftarrow x \mod p$	3: $y \leftarrow x \mod p$
	4: return y	4: return y

Here, "pick $x \in_U E$ " means that we sample x from a set E with uniform distribution. The value ℓ is the bitlength of p. In what follows, we consider distinguishers with unbounded complexity but limited to a single query to a generator.

- Q.1 Estimate how ℓ is usually fixed to have λ -bit security for typical cryptography in a (generic) group of order p. (For instance, in an elliptic curve.)
- **Q.2** Compute the advantage of the best distinguisher between Gen_0 and Gen_1 . Could it be large?
- **Q.3** Compute the advantage of the best distinguisher between Gen_0 and Gen_2 . Hint: use the Euclidean division $2^{\ell+\lambda} = qp + r$.
- Q.4 Based on the computations, what do you conclude about the generator algorithms?