
Advanced Cryptography — Midterm Exam

Serge Vaudenay

14.4.2022

– duration: 1h45
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 2-Move Authenticated Key Agreement

The traditional Diffie-Hellman key agreement scheme is a 2-move protocol. The interface
can be modeled in the following way:

– Setup(1λ) → pp sets up public parameters pp using a security parameter λ.
– Send(pp) → (esk, epk) generates an ephemeral key pair where epk is to be sent to the

counterpart.
– Receive(pp, esk, epk) → K receives the counterpart’s epk and generates the shared key

K.

Both participants are supposed to send and receive to derive their local K. The protocol
is meant to resist to passive attacks with the notion of key indistinguishability. We extend
this primitive in order to authenticate the final key by using a long-term key. For this, we
add the following algorithm in the interface:

– KeyGen(pp) → (lsk, lpk) generates a long term key pair for a user, where lpk is publicly
associated to the user and lsk is kept secret.

In addition, Send takes as input the long-term secret of the user and Receive takes as input
the long-term public key of the counterpart.

Q.1 Rewrite the entire interface and define the correctness notion using a fully specified
game.
To model security against active attacks, we can no longer assume that the protocol
is honestly executed and give the transcript to the adversary. Instead, we use oracles
to model honest Alice honest Bob running Send and Receive. These oracles shall allow
multiple concurrent sessions. Hence, we consider the game in Fig. 1.
The instruction ensure tests if the following predicate is true and causes the oracle to
return ⊥ if it is not the case.

Q.2 Fully define the key indistinguishability notion based on this game.
Motivate why OReceive returns whether KP ̸= ⊥.
Explain why OTest ensures K1 ̸= ⊥.



Game Γb:
1: initialize state to empty
2: Setup(1λ)→ pp
3: KeyGen(pp)→ (lskA, lpkA)
4: KeyGen(pp)→ (lskB , lpkB)
5: Aoracles(pp, lpkA, lpkB)→ z
6: return z

Oracle OReceive(P, sid, lpk, epk):
7: ensure P ∈ {A,B}
8: ensure state[P, sid] exists with only two elements
9: state[P, sid]→ (eskP , epkP )
10: KP ← Receive(pp, eskP , lpk, epk)
11: select K0 at random
12: state[P, sid]←

(eskP , epkP , lpk, epk,K0,KP )
13: return 1KP ̸=⊥

Oracle OSend(P, sid):
14: ensure P ∈ {A,B}
15: ensure state[P, sid] does not exist
16: Send(pp, lskP )→ (eskP , epkP )
17: state[P, sid]← (eskP , epkP )
18: return epkP

Oracle OTest(P, sid):
19: ensure P ∈ {A,B}
20: ensure state[P, sid] exists with six elements
21: state[P, sid]→

(eskP , epkP , lpk, epk,K0,K1)
22: ensure K1 ̸= ⊥
23: return Kb

Fig. 1. Key indistinguishability game

Q.3 By using an adversary who makes Alice and Bob honestly execute the protocol, prove
that security in the sense of the above game can easily be broken.
Propose a way to fix the game to get a sound security notion.

Q.4 Propose a protocol. Note: we do not require a security proof. The grade for this question
will depend on the security of the proposed protocol.

2 Redundant-RSA Decryption

Let n be an RSA modulus of unknown factorization. We know that given (x + 1)3 mod n
and x3 mod n we can easily compute x mod n.

Q.1 Given n, a = (x + 1)5 mod n, and b = x3 mod n, show how to compute x mod n
efficiently. Hint: x is a root of any polynomial which is a combination of (z + 1)5 − a
and z3 − b in Zn.


