
EPFL / I & C

CH-1015 Lausanne

Phone: ++41 (0) 21 693 76 03

Fax: ++41 (0) 21 693 68 79

URL: http://lasecwww.epfl.ch

Cryptography & Security: Final Exam
Solutions

Implementation of the Diffie-Hellman Protocol

1. Given a secure channel, both ends (say, Alice and Bob) can perform
a Diffie-Hellman key-exchange protocol to finally obtain a common
secret key. Subsequently, Alice and Bob can use the secret key to
encrypt/decrypt the rest of the communication (in order to protect the
confidentiality) or to authenticate it using a Message Authentication
Code (MAC).

2. The protocol is summarized on Figure 1. On the figure, the notation
x ∈R [1, p−1] means that x is is pick in [1, p−1] uniformly at random.
Both X and Y are transmitted on the secure channel.

3. If the channel is no longer secure, the protocol can be subject to a
man-in-the-middle attack. Because Bob cannot make sure that the
X he receives indeed comes from Alice, a malicious adversary (Eve)
can intercept Alice’s messages and send some other message to Bob.
Basically, Eve can intercept all messages coming from both Alice and

Alice Bob
Pick x ∈R [1, p− 1]

X ← gx mod p
X−−−−−−−−−−−−−−−−−−−→

Pick y ∈R [1, p− 1]
Y←−−−−−−−−−−−−−−−−−−− Y ← gy mod p

K ← Y x mod p K ← Xy mod p
(K = gxy mod p)

Figure 1: The Diffie-Hellman key agreement protocol between Alice and Bob

1



Bob, and perform two Diffie-Hellman key exchange protocols in par-
allel: one with Alice (in which Eve pretends to be Bob) and one with
Bob (in which Eve pretends to be Alice). At the end, Eve shares a
“secret” key with Alice and another one with Bob. Both Alice and
Bob believe that they share a common secret key.

4. We denote by X‖Y ′ the transcript of Alice and X ′‖Y the one of bob,
where X ′ and Y ′ may be different from X and Y respectively (for
example, if a man-in-the-middle attack occurred). Assuming that the
hash function H is collision resistant, we have

H(X‖Y ′) = H(X ′‖Y )⇒ X‖Y ′ = X ′‖Y ⇒ X = X ′ and Y = Y ′.

The last condition is sufficient to make sure that Alice and Bob share
the same secret key at the end of the protocol.

5. Both Alice and Bob have to make sure that H(X‖Y ′) = H(X ′‖Y ), so
that they will send H(X‖Y ′) and H(X ′‖Y ) respectively. Assuming
that they use a 160 bits hash function, 320 bits must be transmitted
in total. Note that the standard Diffie-Hellman protocol would require
around 2 · log p ≈ 2048 bits in the case where p is a prime of 1024 bits.

6. Truncating all digests down to 20 bits is equivalent to consider that H
is a 20 bits hash function. The complexity of a second preimage attack
is roughly 220 hash computations, which is a trivial computation for a
standard PC.

7. As in question 3, assume Eve intercepts all messages between Alice
and Bob that are not transmitted over the secure channel. Eve can
intercept X and send X ′ ← gx′ to Bob. Once Eve has intercepted Y ,
she can look for Y ′ ← gy′ such that

H(X‖Y ′) = H(X ′‖Y ),

which exactly corresponds to a second preimage attack on H. If the
previous equation holds, the attack succeeds as both Alice and Bob
rely on it to check whether the protocol is correct. Nevertheless, in
this case Eve shares a “secret” key K1 = gxy′ with Alice and a “secret”
key K2 = gx′y with Bob.

8. Using k = 80 is enough for a generic hash function to resist second
preimage attacks. In this case, the previous attack does not apply.

9. Assume that Eve replaces the value of g that is sent by Alice to Bob
by g′ = 1. The resulting protocol is represented on Figure 2. At the
end of the protocol, Alice and Bob share the same key K2 = K1 = 1
provided that Xy mod p′ = 1, i.e., provided that

Xy − 1 ≡ 0 (mod p′). (1)

2



Alice Eve Bob

Pick p and g
p,g−−−−−→ p′,g′=1−−−−−→

Pick x ∈R [1, p− 1]

X ← gx mod p
X−−−−−→ X−−−−−→

Pick y ∈R [1, p− 1]
Y =1←−−−−− Y =1←−−−−− Y ← g′y mod p′

K1 ← Y x mod p = 1 K2 ← Xy mod p′

Figure 2: The Diffie-Hellman key agreement protocol without authenticated
parameters

Noting that Xy−1 = (X−1)(Xy−1 +Xy−2 + · · ·+1), Eve can choose
p′ = X − 1 to make sure that (1) holds. In this case Alice and Bob
share the same key K1 = K2 = 1 which can obviously be computed
by Eve.

10. Bob can for example generate what is called a strong prime number p
i.e., a prime such that q = p−1

2 is also a prime. This can be done by
generating q at random, checking whether it is prime with the Miller-
Rabbin primality testing algorithm and, if q is prime, checking whether
p = 2q + 1 is also prime. Assuming that the primality of q and p are
independent events, the complexity of this generation is O(`5), where
` is the bit length of p. In such a case, the order of the group Z∗p is
ϕ(p) = p − 1 = 2q. Any element of this group is either of order 2
(which can be checked easily), of order q, or a generator of the group
(as, according to Lagrange’s Theorem, the order of an element divides
the group order). Therefore, in this case it is sufficient to check that
the order of g is different from two (i.e., it is sufficient to check that
g2 6= 1) to make sure that its order is large.

A Provably Secure Hash Function

1. The prime number p can be generated by picking ` bit integers, and
submitting these numbers to the Miller-Rabbin primality test until it
succeeds. Given that the number of random numbers that are neces-
sary to obtain a prime is O(`) and that the complexity of each Miller-
Rabbin primality test is O(`3), the complexity of generating p (and q)
is O(`4).

2. To compute h(x) = gx, one typically use a square-and-multiply algo-
rithm (also called exponentiation from left to right). The complexity
is O(`2 · log(x)).

3



3. Typically, the size of gx is roughly of the same size as n, which is of
size 2`. The complexity of a first preimage attack is O(22`) and the
complexity of a collision search is O(2`).

4. According to the Chinese Remainder Theorem (CRT), if p and q are
coprimes, the mapping

f : Zn −→ Zp × Zq

x 7−→ (x mod p, x mod q)

is an isomorphism. We also have that for all (x1, x2) ∈ Zp × Zq,

f−1(x1, x2) = (x1 · q · (q−1 mod p) + x2 · p · (p−1 mod q)) mod n.

From this, we deduce that

g = (g1 · q · (q−1 mod p) + g2 · p · (p−1 mod q)) mod n.

5. The order λ of g is the least positive integer such that gλ = 1 in
Z∗n. According to the CRT (and using the notations of the previous
question), we know that

gλ = 1⇔ f(gλ) = f(1)⇔ (gλ
1 , gλ

2 ) = (1, 1).

Therefore, λ can be considered as the smallest positive integer such
that gλ

1 = 1 in Z∗p and such that gλ
2 = 1 in Z∗q . As the order of g1 and

g2 are p− 1 and q − 1 respectively, we have
{

gλ
1 ≡ 1 (mod p)

gλ
2 ≡ 1 (mod q)

⇔
{

(p− 1)|λ
(q − 1)|λ

so that the least positive integer satisfying the previous conditions is

λ = lcm(p− 1, q − 1).

6. It is easy to see that h(0) = h(λ). More generally for two distinct
integers k and k′ we have h(k · λ) = h(k′ · λ).

7. Assume we know x 6= y such that h(x) = h(y). We have

gx ≡ gy (mod n) ⇔ gx−y ≡ 1 (mod n) ⇔ λ|(x− y).

Therfore, x− y is a multiple of λ.

8. It is know that the knowledge of a multiple of λ allows to factoring n
(see the lecture notes). The algorithm which is used is very similar to
the Miller-Rabbin primality test. Therefore, from the previous ques-
tion, finding a collision on h is sufficient to factoring n. Conversely, we
know from question 5 that the factorization of n allows to compute λ,
which is sufficient to computes collisions on h (from question 6). We
conclude that finding a collision on h is equivalent to factoring n.

4



9. One can take for example ` = 1024. The security of the hash function
would then be comparable to the security of RSA-2048.

5


