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Part 1: Collision within the Merkle-Damg̊ard Construction

Let N and n be two positive integers such that N À n. Let H :{0,1}N →{0,1}n be a uniformly
distributed random function.

1. Compute the probability that two distinct fixed inputs produce a collision on the function H, i.e.,
compute PrH [H(x) = H(x′)], where x and x′ are two given elements of {0,1}N such that x 6= x′.

We now consider that the function H is based on a variant of the Merkle-Damg̊ard construction (see
Figure 1). The message is decomposed in blocks of ` bits. For the sake of simplicity, we assume that
the message has a size which is a multiple of blocks. The number of blocks is denoted by d and we
have N = d · `. In this variant, the compression functions h1, . . . , hd+1 :{0,1}n×{0,1}` →{0,1}n are
independent random functions. To hash a message x ∈{0,1}N , the message is first padded and we obtain
x‖pad ∈{0,1}N+` where pad is a bitstring of size ` which only depends on the length of x, i.e., we can
write pad = cst(N) as a constant, once N is fixed. We set xd+1 := pad.

Then, x‖pad is processed as shown on Figure 1, where the output of the last compression function
hd+1 is the hash of the message.
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Figure 1: The function H based on a variant of the Merkle-Damg̊ard construction
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We consider the case where d = 1 and consider two distinct fixed one-block messages x = x1 and
x′ = x′1 of the same length `.

2. Compute Pr[h1(IV, x1) = h1(IV, x′1)].

3. In the case where h1(IV, x1) 6= h1(IV, x′1), compute the probability that H(x) = H(x′), i.e., compute

Pr[H(x) = H(x′) | h1(IV, x1) 6= h1(IV, x′1)].

4. Deduce from the two previous question the value of

Pr[H(x) = H(x′)]

when H follows the variant of the Merkle-Damg̊ard construction.
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We now consider the general case where d ≥ 1 and consider two fixed messages (of the same length)
x = x1‖ · · · ‖xd and x′ = x′1‖ · · · ‖x′d such that x1 6= x′1 and xi = x′i for all i > 1.

5. Using the previous question, show that

Pr[H(x) = H(x′)] = 2−n
d∑

i=0

(1− 2−n)i

for all d ≥ 1. Compute the limit of this sum when d →∞. What kind of cryptographic conclusion about
Merkle-Damg̊ard construction can you deduce from this?
Hint: Note that “pad” can be seen as another block xd+1 such that xd+1 = x′d+1. Using induction for
this proof may be useful!
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6. Here, we consider two fixed messages (of the same length) x = x1‖ · · · ‖xd and x′ = x′1‖ · · · ‖x′d such
that x1 6= x′1, x2 6= x′2, and xi = x′i for all i > 2. Compute

Pr[H(x) = H(x′)]

for any d ≥ 2.

7. Finally, let us consider the very general case with two distinct fixed messages x = x1‖ · · · ‖xd and
x′ = x′1‖ · · · ‖x′d. Find a general formula for

Pr[H(x) = H(x′)]

depending on some characterization of x and x′.
Hint: Look at the largest j such that xj 6= x′j .
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Part 2: RSA Variants with CRT Decryption

We first recall classical RSA with the decryption variant based on the Chinese Remainder Theorem.
Let p and q be two primes of same size and n = pq. We then select the public exponent e such that
gcd(e, (p− 1)(q − 1)) = 1.

8. Explain how the decryption exponent d is computed.

In this CRT decryption variant, the primes p and q are known to the decrypter and the main
computational task consists of some operations in Zp and in Zq.

9. Explain carefully how we decrypt a given ciphertext c ∈ Zn using this decryption variant.
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Multi-Prime RSA

From now on, we consider an RSA variant with a modulus of the form n = pqr, where p, q, and r are
prime integers of same size. Let s be the size in bits of n. We also assume that if a plaintext is taken
randomly in x ∈U Zn, then this one should lie in Z∗n.

10. Justify the last assumption when s is large enough by computing the probability that an element
x ∈U Zn picked uniformly at random also lies in Z∗n.

We want to encrypt as in the classical RSA variant using an integer e as exponent.

11. What condition on e is necessary and sufficient for the encryption to be invertible? How do we
compute the decryption exponent?
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Again, we want to decrypt using the Chinese Remainder Theorem. So, from a ciphertext c ∈ Z∗n, we
first compute cp = c mod p, cq = c mod q, cr = c mod r.

12. Assume here that you know how to invert the CRT transform, i.e., you are able to invert Ψ : x 7→
(x mod p, x mod q, x mod r). Explain carefully how the corresponding plaintext m is retrieved with this
CRT decryption variant.

13. Exhibit a formula for inverting Ψ.
Hint: First you need to find three elements ep, eq, and er such that Ψ(ep) = (1, 0, 0), Ψ(eq) = (0, 1, 0),
and Ψ(eq) = (0, 0, 1). Then, everything works like in linear algebra!
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14. Analyze the asymptotic complexity of the decryption with the two moduli variants n = pq and
n = pqr when both moduli are of size s. Compare both complexities and express the gain of one variant
over the other with a multiplicative factor.

Multi-Power RSA

Here, we focus on another RSA variant with a modulus of the form n = p2q, where p and q have the
same size.

15. Explain how RSA with a modulus of this type works. More precisely, describe the key generation,
the encryption, and the decryption.
Remark: For the moment, we do not consider a CRT variant for the decryption!
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Note that a classical CRT variant of the decryption would require to retrieve the plaintext modulo
p2 and modulo q. However, this is not the fastest way to retrieve the plaintext. We look at another
algorithm in what follows.

16. Let e be a positive integer and y be an integer such that 1 ≤ y ≤ p2 − 1. Assume we know an
integer 1 ≤ x1 ≤ p − 1 such that xe

1 ≡ y (mod p). Find a method to compute an integer x such that
xe ≡ y (mod p2).
Hint: First set y1 := xe

1 mod p and write x = x1 + k · p for an integer k. Then, write y = y1 + ` · p for
an integer ` and solve an equation to retrieve k.
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17. Explain now how you decrypt efficiently using the Chinese Remainder Theorem.

18. Compare the asymptotic complexity of the decryption with CRT of the classical RSA variant and
the above decryption method for RSA with a modulus n = p2q, when both moduli have the same size s.
What is the asymptotic multiplicative factor gained by the second method?
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