Cryptography and Security Course
(Cryptography Part)

Final Exam Solution

Part 1: Collision within the Merkle-Damgard Construction

1. H is a random function, hence the output is uniformly distributed, so it should be trivial to see

that
Pru[H(z) = H(z")] = —

To extrapolate in more detail, there are (2")2" functions h : {0,1}" — {0,1}™ and the probability
that H is equal to any of these is uniformly distributed. For a given z, z’ where z # x’, we obtain

2n)2N 1 1
PrH[H(x) = H Z PI’ H = h] *]-h(r) h(z') = 2N Z]-h(r) h(z') = (2n)2N = 2_n

. As the IV is fixed and is the same for both inputs x, 2, this probability is exactly the same as the
probability we computed in the previous section, so

Prib (IV, 21) = ha(IV, 21)] = oo

. Both messages x, 2’ have the same length ¢, and pad = cst(N) where N = ¢ in this case, so we
have the same pad for both z,2’. Thus, this probability is exactly the same as what we computed
in the previous section. In fact,

PriH(x) = H(z")|hi(IV,21) # hi(IV,27)] = —

Pr[H(z) = H(2")] = Prlh1(IV,21) = hi(IV,2))] *x Pr[H(z) = H(2")|h1(IV,z1) = hi (IV, 2))]
+ Pr[hl(IV x1) # h(IV, 2))] * Pr[H(2) = H(2")|h (IV, 21) # h(IV, 2})]
= grxl+(l—gn)*gn = 51 — o3

: / /!
for given x, 2’ where x # .

. We prove this by induction. For d = 1, by the previous section, this result is correct! Assuming
this result is correct for d, we prove it for d + 1.

For d + 1, if the input to hayo is (A, zay2) and (A’ z),,) for 2’ respectively, we know that
Tqip = T, as both messages have the same length. Calling x; as the message of length d
and xo as the message of length d + 1 and B = H(z1) = H(z}) and C = H(x2) = H(a}) and
D = hgqi2(A, pad) = hgio(A’, pad), we have

d d
Pr(C) =Pr(D|B)*Pr(B)+Pr(D[B)*Pr(B) =27"> (1-2"") +27"(1-2"") (1-27"))

i=0 =0
d+1

=27y (1-27")

=0

If d — oo, we have a geometric series which converges, as 1 — 27" < 1. So,

1 1

= EE———
o FT (1 -2

We can conclude that Merkle-Damgard construction is not appropriate for arbitrary large message
sizes!

6. We first need to compute the probability that A = hq(IV,21) = hi(IV,2}) and B = ha(a,z2) =
hi(a’,24), we have

Pr(B) = Pr(B|A) x Pr(A) + Pr(B|A) « Pr(A) = 272" 27 "(1 —27") = 27"

With similar computations as before, we obtain

T
L

PrlH(x) = H(z")] =27" ‘ (1—-27")

Part 2: RSA Variants with CRT Decryption

1. We need to inverse e modulo ¢(n) = (p—1)(¢—1). This can be perfomed using the extended Euclid
Algorithm.

2. Here, we have to extract the eth root of ¢ modulo n. Using Chinese Remainder Theorem, this can
be obtained by extracting the eth root of ¢ modulo p and the eth root of ¢ modulo ¢. Let ¢, := ¢ mod p,
¢q :=cmod g and d, := e~ mod p — 1, d, := e~ mod g — 1. We then compute

— d . d
my, 1= cp? mod p and m, := ¢ mod q.

By inverting the CRT transform on (m,,m,), we get the desired plaintext. Note that replacing both d,
and d, by d := e~ ! mod (p — 1)(¢ — 1) would lead to the correct result as well.

Multi-Prime RSA

3. This probability corresponds to the ratio

)))

Hence, this probability is very close to 1 for primes p, ¢, or r of classical cryptographic size.

4. As in classical RSA, the exponent e should be coprime with ¢(n). With this modulus, this
corresponds to the condition ged(e, (p — 1)(¢ — 1)(r — 1)) = 1. The decryption exponent is d =
et mod (p—1)(¢g—1)(r —1).

5. We extract an eth root componentwise on (¢p, ¢q, ¢,) in Zy, x Zg x Z,. To this end, we first compute
dy:=e'modp—1,d, :=e ' modr—1,d, := e ! mod r — 1. The plaintext is retrieved by evaluating

\I'_l(cgp mod p, cgq mod ¢, ¢?” mod r).

6. e, is an integer such that it is a multiple of ¢ and . So, we can write e, of the form kqr, where k is
any integer. Since, e, must be congruent to 1 modulo p, it remains to choose k to be the inverse of gr
modulo p. Applying a similar reasoning for e, and e, gives us

(epreqs€r) = (qr - ((gr)~" mod p), pr- ((pr)~" mod q),pq - ((pg) ™" mod r)).

Finally, using the linearity with respect to the scalar multiplication, we get

" mod g)+x,-pg-((pg) " mod r).

\I’il(xp’ Tg, Ty) = TpeptTpeptpep = xp'qr'((qr)’l mod p)-+xzq-pr-((pr)”
7. The complexity is mainly due to the modular exponentiations. With the classical RSA modulus, we
need to perform 2 modular exponentiations modulo a number of size s/2. The second variant requires 3
modular exponentiations modulo a number of size s/3. So, the respective asymptotic complexities are
within the order of magnitude of 2(s/2) and 3(s/3)3. So, the second variant is faster of a multiplicative
factor of 9/4.

Multi-Power RSA

8. We generate two prime numbers p and q of a given size by picking numbers at random until the Miller-
Rabin test outputs “pseudo-prime”. We set n = p?>q. Then, we select a public exponent 1 > e > ¢(p?q)
such that ged(e, o(p?q)) = ged(e, p(p—1)(g—1)) = 1. The decryption exponent is obtained by computing
d:=e ' mod p(p — 1)(q — 1). The public key is (n, €) and the secret key is (n,d). We encrypt a message
m € Z*, by computing m® mod n. The decryption is performed as follows ¢? mod n.

9. We need to find a k satisfying
(x1 +kp)® =y +p (mod p?).

From this, we get
¢ +ekp=y +Lp (mod p?)

and

e _ d 2
k= <—x1 Y1 mocp) e~ ! mod p.
p

10. Let c be a given ciphertext. We first compute ¢, := ¢ mod p? and ¢, := ¢ mod ¢. In order to extract
an eth root of ¢, modulo p?, we extract this root modulo p and apply the technique of the previous
question to retrieve this root modulo p?. So, we compute mq, := c,‘f” mod p, where d, := e~ ! mod p — 1
(d would be correct as well, but less efficient!). Then, using the previous technique, we retrieve m, € Z;z

such that m¢ = ¢, (mod p*). We also compute mg := c;i“ mod g, where d, = e~}

inverting the CRT transform on the pair (m,, m,) allows to retrieve the plaintext.

mod ¢ — 1. Finally,

11. The complexity of the above method is mainly due to 2 modular exponentiations modulo a number
of size s/3. Hence, the asymptotic complexity is within the order of magnitude 2(s/3)3. If we compare
with the classical RSA with CRT, get a ratio of

