Cryptography and Security — Midterm Exam

Serge Vaudenay

24.11.2011

- duration: 1h45
- no documents is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- exam proctors will not answer any technical question during the exam
- answers to every exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 A Weird Mode of Operation

In this exercise, we assume that we have a block cipher C and we use it in the following mode of operation: to encrypt a sequence of blocks x_1, \ldots, x_n , we initialize a counter t to some IV value, then we compute

$$y_i = t_i \oplus C_K(x_i)$$

for every *i* where *K* is the encryption key and $t_i = \mathsf{IV} + i$. The ciphertext is

$$\mathsf{IV}, y_1, \ldots, y_n$$

Namely, IV is sent in clear.

Q.1 Is this mode of operation equivalent to something that you already know? Say why? **Q.2** Does the IV need to be unique?

Q.3 What kind of security problem does this mode of operation suffer from?

2 RSA Modulo 1000001

Given $a_1, a_2, \ldots, a_n \in \{0, 1, \ldots, 9\}$, we denote by $\overline{a_1 a_2 \cdots a_n}$ the decimal number equal to $10(10(\cdots 10a_1 + a_2 \cdots) + a_{n-1}) + a_n$.

Q.1 Consider a decimal number $\overline{abc \, def}$. Show that

$$\overline{abc\,def} \equiv \overline{ab} - \overline{cd} + \overline{ef} \pmod{\mathbf{101}}$$

As an application, compute 336 634 mod 101 and 663 368 mod 101.

- **Q.2** Compute the inverse of x = 1000 modulo p = 101.
- **Q.3** Consider a decimal number $\overline{abc \, def}$. Show that

$$\overline{abc \, def} \equiv \overline{ab00} - \overline{ab} + \overline{cdef} \pmod{9901}$$

As an application, compute 336 634 mod 9 901 and 663 368 mod 9 901. Q.4 Compute $x^{199} \mod q$ for $x = 1\,000$ and $q = 9\,901$.

- **Q.5** Given a and b, show that $x = 336\,634a + 663\,368b$ is such that $x \mod 101 = a$ and $x \mod 9\,901 = b$.
- **Q.6** Given p = 101 and $q = 9\,901$, we let N = pq. Compute $\varphi(N)$ and factor it into a product of prime numbers.
- **Q.7** Let *e* be an integer. Show that *e* is a valid RSA exponent for modulus *N* if and only if there is no prime factor of $\varphi(N)$ dividing *e*.
- **Q.8** Show that e = 199 is a valid RSA exponent for modulus N and compute the encryption of $x = 1\,000$ for this public key.

3 AES Galois Field and AES Decryption

We briefly recall the AES block cipher here. It encrypts a block specified as a 4×4 matrix of bytes s and using a sequence W_0, \ldots, W_n of matrices which are derived from a secret key. For convenience the row and columns indices range from 0 to 3. For instance, $s_{1,3}$ means the term of s in the second row and last column. The main AES encryption function is defined by the following pseudocode:

AESencryption(s, W)

- 1: AddRoundKey (s, W_0)
- 2: for r = 1 to n 1 do
- 3: $\mathbf{SubBytes}(s)$
- 4: $\mathbf{ShiftRows}(s)$
- 5: MixColumns(s)
- 6: **AddRoundKey** (s, W_r)
- 7: end for
- 8: $\mathbf{SubBytes}(s)$
- 9: **ShiftRows**(s)
- 10: **AddRoundKey** (s, W_n)

AddRoundKey (s, W_r) is replacing s by $s \oplus W_r$, the component-wise XOR of matrices s and W_r . **SubBytes**(s) is replacing s by a new matrix in which the term at position i, j is $S(s_{i,j})$, where S is a fixed permutation of the set of all byte values. **ShiftRows**(s) is replacing s by a new matrix in which the term at position i, j is $s_{i,i+j \mod 4}$. **MixColumns**(s) is replacing s by a new matrix in which the column at position j is $M \times s_{.,j}$, where $s_{.,j}$ denotes the column at position j of s and M is a fixed matrix defined by

$$M = \begin{pmatrix} 0x02 \ 0x03 \ 0x01 \ 0x01 \\ 0x01 \ 0x02 \ 0x03 \ 0x01 \\ 0x01 \ 0x02 \ 0x03 \ 0x03 \\ 0x03 \ 0x01 \ 0x01 \ 0x02 \end{pmatrix}$$

The matrix product inherits from the algebraic structure GF(256) on the set of all byte values. Namely, each byte represents a polynomial on variable x of degree at most 7 and coefficients in \mathbb{Z}_2 . Polynomials are added and multiplied modulo 2 and modulo $P(x) = x^8 + x^4 + x^3 + x + 1$. The correspondence between bytes and polynomial works as follows: each byte a is a sequence of 8 bits a_7, \ldots, a_0 which is represented in hexadecimal 0xuv where u and v are two hexadecimal digits (i.e. between 0 and f), u encodes $a_7a_6a_5a_4$, and v encodes $a_3a_2a_1a_0$ by the following encoding rule:

0000→0	$0100{ ightarrow}4$	1000→8	$1100 \rightarrow c$
0001→1	$0101 { ightarrow} 5$	$1001 { ightarrow} 9$	1101 \rightarrow d
0010→2	0110→6	1010 $ ightarrow$ a	1110 \rightarrow e
0011→3	$0111 { ightarrow} 7$	$1011 { ightarrow} b$	$1111 \rightarrow f$

- **Q.1** Provide a pseudocode for AESdecryption(s, W), for AES decryption.
- $\mathbf{Q.2}$ Which polynomial does 0x2b represent?
- **Q.3** Compute 0x53 + 0xb8.
- $\mathbf{Q.4}$ Compute $\texttt{0x21} \times \texttt{0x25}.$
- **Q.5** Compute the inverse of 0x02. Hint: look at P(x).
- **Q.6** Show that M^{-1} is of form

$M^{-1} =$	(0x0e	0x0b	0x0d	0x09	
	0x09	•	•	•	
	0x0d	•	•	•	ŀ
	(0x0b	•	•	•)	

where all missing terms are in the set $\{0x09, 0x0b, 0x0d, 0x0e\}$.