
Cryptography and Security — Midterm Exam

Serge Vaudenay

26.11.2014

– duration: 1h45
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Generating Prime Numbers

We recall that if we pick a random number in {1, 2, . . . , N}, the probability that it is prime
is approximately 1

lnN .
We want to generate prime numbers p and q for an RSA modulus with exponent e = 3.

To generate one ℓ-bit prime number, we iteratively pick a random number between 2ℓ−1 and
2ℓ − 1 until we find a prime number:

GenPrime(ℓ)
1: repeat
2: pick p ∈ {2ℓ−1, 2ℓ−1 + 1, . . . , 2ℓ − 2, 2ℓ − 1} at random
3: until p is prime
4: output p

Then, to generate a 2ℓ-bit RSA key, we proceed as follows:

GenRSA(ℓ)
1: repeat
2: p = GenPrime(ℓ)
3: q = GenPrime(ℓ)
4: until e = 3 is a valid exponent with the RSA modulus pq
5: output p, q

In this exercise, we assume that ℓ is large enough for the RSA security.

Q.1 Estimate the probability that a randomly selected element from {2ℓ−1, 2ℓ−1 + 1, . . . , 2ℓ −
2, 2ℓ − 1} is prime.

Q.2 Show that the GenPrime algorithm can be speeded up by a factor 2 by selecting random
elements in {2ℓ−1 + 1, 2ℓ−1 + 3, . . . , 2ℓ − 3, 2ℓ − 1}.

Q.3 Show that e = 3 is a valid RSA exponent if and only if p and q are equal to 2 modulo 3.
Q.4 Consider the following algorithm:

GenRSA′(ℓ)
1: repeat
2: p = GenPrime(ℓ)
3: until p mod 3 = 2
4: repeat
5: q = GenPrime(ℓ)

6: until q mod 3 = 2
7: output p, q

Show that it produces equivalent outputs to GenRSA but with a twice lower expected
complexity.

Q.5 The previous way to generate prime numbers is equivalent to using the following new
algorithm:

GenPrime′(ℓ)
1: repeat
2: pick p ∈ {2ℓ−1, 2ℓ−1 + 1, . . . , 2ℓ − 2, 2ℓ − 1} at random
3: until p is prime and p mod 3 = 2
4: output p

Propose another algorithm GenPrime′′ (we expect a full description of the algorithm in
the same style as GenPrime′) to generate the prime numbers which is about 6 times faster
than GenPrime′. Conclude that GenRSA with this new algorithm instead of GenPrime is
speeded up by a factor of about 12.

HINT: a Chinese proverb says that if you have two requirements at the same time, maybe
you should combine them into a single requirement.

Q.6 Propose a way to speed up GenPrime′′ by a factor 4
5 × 6

7 × 10
11 × 12

13 × 16
17 × 18

19 × 22
23 × · · ·

2 Encoding Messages in Elliptic Curves

We consider the ElGamal cryptosystem over an elliptic curve. I.e., we work over a field Zp,
use parameters a, b to define the curve y2 = x3 + ax+ b, and use a generator P of the curve,
who has a prime order n. (We recall that n is close to p, due to the Hasse Theorem.) Given
a secret key d, the public key is Q = dP . Normally, we encrypt group elements. To encrypt a
point M in the curve, we compute R = rP for r ∈U Zn and S = M + rQ. The ciphertext is
(R,S).

We want to encrypt bitstrings (of fixed length which is less than log2 n). To encrypt a
bitstring m, we map it to a point on the elliptic curve M = map(m) then encrypt M . We
assume that map is efficiently invertible so that after decrypting (R,S) we can apply map−1

to obtain m. In this exercise, we consider the problem of defining map.

Q.1 Given the secret d and the parameters (p, a, b, n, P) recall how the above ElGamal cryp-
tosystem is constructed from the semi-static Diffie-Hellman protocol. Then, give the
method to decrypt the ciphertext (R,S).

Q.2 One convenient way to map an element of Zn to the elliptic curve is to multiple the
integer by P . We define a function integer to convert a bitstring into an integer. I.e.,

integer(m) =
∑|m|

i=1mi2
|m|−i, where |m| is the length of the bitstring m and mi is the ith

bit of m.

List the requirements on the map function to make the cryptosystem usable.

Say if the function map(m) = integer(m)P satisfies them.

Q.3 We now consider map(m) = (x, y) where x = integer(m), y is the smallest square root of
x3+ax+b, and integer converts a bitstring into an integer. By reviewing the requirements
on map, what do you think of this function?

Q.4 Let k be a small (public) constant. We change the previous construction by taking x be
the smallest integer at least equal to 2kinteger(m) such that x3 + ax + b is a quadratic

residue. Review again the required properties on map and provide algorithms to compute
map and map−1.

Q.5 Assuming that p has 256 bits, propose a value (as small as possible) for k so that the
previous construction should work with probability at least 1− 2−80.
HINT: for this question, assume that x 7→ x3+ax+b maps intervals of size 2k to “random
values” in Zp.

