Cryptography and Security — Midterm Exam

Serge Vaudenay

26.11.2014

- duration: 1h45
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Generating Prime Numbers

We recall that if we pick a random number in $\{1, 2, ..., N\}$, the probability that it is prime is approximately $\frac{1}{\ln N}$.

We want to generate prime numbers p and q for an RSA modulus with exponent e = 3. To generate one ℓ -bit prime number, we iteratively pick a random number between $2^{\ell-1}$ and $2^{\ell} - 1$ until we find a prime number:

 $GenPrime(\ell)$

1: repeat

2: pick $p \in \{2^{\ell-1}, 2^{\ell-1}+1, \dots, 2^{\ell}-2, 2^{\ell}-1\}$ at random

- 3: **until** p is prime
- 4: output p

Then, to generate a $2\ell\text{-bit}$ RSA key, we proceed as follows:

$\mathsf{GenRSA}(\ell)$

- 1: repeat
- $2: \quad p = \mathsf{GenPrime}(\ell)$
- 3: $q = \text{GenPrime}(\ell)$
- 4: **until** e = 3 is a valid exponent with the RSA modulus pq
- 5: output p, q

In this exercise, we assume that ℓ is large enough for the RSA security.

- **Q.1** Estimate the probability that a randomly selected element from $\{2^{\ell-1}, 2^{\ell-1} + 1, \dots, 2^{\ell} 2, 2^{\ell} 1\}$ is prime.
- **Q.2** Show that the GenPrime algorithm can be speeded up by a factor 2 by selecting random elements in $\{2^{\ell-1}+1, 2^{\ell-1}+3, \ldots, 2^{\ell}-3, 2^{\ell}-1\}$.
- **Q.3** Show that e = 3 is a valid RSA exponent if and only if p and q are equal to 2 modulo 3.
- Q.4 Consider the following algorithm:

 $GenRSA'(\ell)$

1: repeat

- 2: $p = \text{GenPrime}(\ell)$
- 3: **until** $p \mod 3 = 2$
- 4: repeat
- 5: $q = \text{GenPrime}(\ell)$

- 6: **until** $q \mod 3 = 2$
- 7: output p, q

Show that it produces equivalent outputs to GenRSA but with a twice lower expected complexity.

Q.5 The previous way to generate prime numbers is equivalent to using the following new algorithm:

GenPrime'(ℓ)

1: repeat

- 2: pick $p \in \{2^{\ell-1}, 2^{\ell-1}+1, \dots, 2^{\ell}-2, 2^{\ell}-1\}$ at random
- 3: **until** p is prime and $p \mod 3 = 2$
- 4: output p

Propose another algorithm GenPrime" (we expect a full description of the algorithm in the same style as GenPrime') to generate the prime numbers which is about 6 times faster than GenPrime'. Conclude that GenRSA with this new algorithm instead of GenPrime is speeded up by a factor of about 12.

HINT: a Chinese proverb says that if you have two requirements at the same time, maybe you should combine them into a single requirement.

Q.6 Propose a way to speed up GenPrime" by a factor $\frac{4}{5} \times \frac{6}{7} \times \frac{10}{11} \times \frac{12}{13} \times \frac{16}{17} \times \frac{18}{19} \times \frac{22}{23} \times \cdots$

2 Encoding Messages in Elliptic Curves

We consider the ElGamal cryptosystem over an elliptic curve. I.e., we work over a field \mathbf{Z}_p , use parameters a, b to define the curve $y^2 = x^3 + ax + b$, and use a generator P of the curve, who has a prime order n. (We recall that n is close to p, due to the Hasse Theorem.) Given a secret key d, the public key is Q = dP. Normally, we encrypt group elements. To encrypt a point M in the curve, we compute R = rP for $r \in_U \mathbf{Z}_n$ and S = M + rQ. The ciphertext is (R, S).

We want to encrypt bitstrings (of fixed length which is less than $\log_2 n$). To encrypt a bitstring m, we map it to a point on the elliptic curve $M = \mathsf{map}(m)$ then encrypt M. We assume that map is efficiently invertible so that after decrypting (R, S) we can apply map^{-1} to obtain m. In this exercise, we consider the problem of defining map.

- **Q.1** Given the secret d and the parameters (p, a, b, n, P) recall how the above ElGamal cryptosystem is constructed from the semi-static Diffie-Hellman protocol. Then, give the method to decrypt the ciphertext (R, S).
- **Q.2** One convenient way to map an element of \mathbb{Z}_n to the elliptic curve is to multiple the integer by P. We define a function integer to convert a bitstring into an integer. I.e., $\operatorname{integer}(m) = \sum_{i=1}^{|m|} m_i 2^{|m|-i}$, where |m| is the length of the bitstring m and m_i is the *i*th bit of m.

List the requirements on the map function to make the cryptosystem usable.

Say if the function map(m) = integer(m)P satisfies them.

- **Q.3** We now consider map(m) = (x, y) where x = integer(m), y is the smallest square root of $x^3 + ax + b$, and integer converts a bitstring into an integer. By reviewing the requirements on map, what do you think of this function?
- **Q.4** Let k be a small (public) constant. We change the previous construction by taking x be the smallest integer at least equal to 2^k integer(m) such that $x^3 + ax + b$ is a quadratic

residue. Review again the required properties on map and provide algorithms to compute map and map^{-1} .

Q.5 Assuming that p has 256 bits, propose a value (as small as possible) for k so that the previous construction should work with probability at least $1 - 2^{-80}$. HINT: for this question, assume that $x \mapsto x^3 + ax + b$ maps intervals of size 2^k to "random values" in \mathbf{Z}_p .