
Cryptography and Security — Final Exam

Solution

Serge Vaudenay

17.1.2017

– duration: 3h

– no documents allowed, except one 2-sided sheet of handwritten notes

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Stealing Bitcoins

We recall the ECDSA signature scheme.

– We are given a point G of an elliptic curve and its prime order n.

– A secret key is a value d ∈ Zn and the public key is the point Q = dG.

– To sign a message M , we pick a random k ∈ Z∗
n and we compute r = (kG)1 mod n, where

(kG)1 denotes the x-coordinate of kG and (kG)1 denotes its conversion into an integer;

we compute s = H(M)+dr
k mod n, where H(M) is the digest of M ; the signature of M is

(r, s).

– To verify a signature (r, s) of a message M for Q, we just compare r with a function V of
(G,n,Q, r, s,M).

Q.1 Say what is the verification function V .

We compare r with

V (G,n,Q, r, s,M) = (
H(M)

s
G+

r

s
Q)1

because
H(M)

s
G+

r

s
Q =

H(M)

s
G+

dr

s
G =

H(M) + dr

s
G = kG

Q.2 Assuming that a signing algorithm is implemented using a terrible random number gener-
ator (namely, with one for which the generated number often repeats), show that given two
signed messages (M, r, s) and (M ′, r′, s′) for the public key Q, an adversary may extract
the secret key d.



We know that k = k′ often occurs. If k = k′, we can see that r = r′ and we have

s− s′ = H(M)−H(M ′)
k mod n so

d =
1

r

(
s

s− s′
(H(M)−H(M ′))−H(M)

)
mod n

By computing d this way as soon as r = r′, we may obtain the correct secret value
d. We normally have no cases r = r′ and k ̸= k′ but we can still rule them out by
checking that the above gives d satisfying Q = dG. Here, even though ECDSA is
believed to be secure, a bad random number generator compromises the long term
secret.

Q.3 We recall that a bitcoin transaction for an account Q is a signature of a will to collect
the UTXO utxo1, . . . , utxot owned by Q and split them to some accounts Q1, . . . , Qu.
Assuming that a user has implemented his ECDSA signing algorithm using a terrible
random number generator, show how we can steal his bitcoins.

By scanning the blockchain we look at pairs of signatures for Q and apply the above
formula until it gives the right secret d. Then, we forge a signature using d to transfer
all UTXO owned by Q to another account.

2



2 Kleptography

Alice wants to communicate securely with Bob. For that, she buys a highly secure tamperproof
device from the company mole.com and uses it to communicate. Upon reset, this device
generates its own RSA secret key with random primes p and q, modulus n, and exponents e
and d. In this implementation, the exponent e is random and of the same size as the modulus.
It outputs n and e. Then, when we input a ciphertext, it decrypts it and returns the plain
message.

Q.1 Suggest a modulus length for good security and describe the algorithm to generate e.

A secure modulus length could be 2 048 bits. To generate e, we pick a random e
repeatedly until it is coprime with φ(n) = (p− 1)(q − 1).

Q.2 The company mole.com is hiding a trapdoor to be able to decrypt messages. For this,
there is a symmetric secret key t which is put inside the device and the exponent e is
chosen of form SymEnct(p)∥random.
Explain how mole.com can decrypt messages sent to Alice.

From the public key, mole.com gets e, extracts SymEnct(p) and decrypts it with the
trapdoor t. Then, the company can divide n by p to obtain q and compute d =
e−1 mod φ(n). Given d and n, the company can decrypt messages using the RSA
decryption algorithm.

Q.3 Some agencies from the “axis of evil” (in the sense of G.W. Bush) succeed to reverse
engineer devices from mole.com. Show that this creates a major national security issue for
the country in which these devices are sold.

The evil agencies can extract the trapdoor t by reverse engineering. Then, it can
decrypt all messages generated by any of these devices, just like mole.com in the
previous question.

Q.4 Using asymmetric encryption, propose a new generation of mole.com devices which allows
the company to continue to decrypt messages without risking a security break in the case
of reverse engineering.

One idea would be to use a public key to encrypt p, with the secret key only known by
mole.com and take e = Encmpk(p)∥random where mpk is the public key of mole.com
and the trapdoor t is the associated secret key.

Q.5 In the above question, when the selected asymmetric encryption is RSA, observe that due
to moduli sizes, this decreases the security of the encryption. Propose a way to fix this.

One requirement in the solution of the previous question is that the asymmetric en-
cryption produces ciphertexts smaller than the RSA modulus so that we have enough
space in e to store Encmpk(p). With RSA, the problem is to that the modulus size
for mpk must be smaller than the modulus size of the encryption in the device. So,
the security decreases. To fix this, we could use a public key cryptosystem with short
messages. For instance, we could use ElGamal over elliptic curves and use point
compression for the ciphertext.

3



3 AES-GCM Issues

We recall the GCMmode of AES. We modified it a bit for simplicity in this exercise: we assume
no associated data, all messages have a length multiple of 128 bits, and the authentication
tag has 128 bits. To encrypt a message P with an AES key K and a 96-bit nonce IV, we
split it into m 128-bit blocks P = (P1, . . . , Pm) and run the following algorithm (written in
pseudocode).

1: Ji = IV∥(i+ 1 mod 232)32, i = 0, . . . ,m, where x32 is the binary representation of x in 32
bits

2: C = (C1, . . . , Cm) where Ci = Pi ⊕ AESK(Ji)
3: H = AESK(0128) (called the authentication key)
4: S = C1H

m ⊕ · · · ⊕ CmH (with multiplications in GF(2128))
5: T = S ⊕ AESK(J0)
6: the output is (C, T )

Q.1 Give the description of decryption/authentication in pseudocode.

To decrypt (C1, . . . , Cm, T ) with a key K and nonce IV, we proceed as fol-
lows.

1: Ji = IV∥(i+ 1 mod 232)32, i = 0, . . . ,m
2: P = (P1, . . . , Pm) where Pi = Ci ⊕ AESK(Ji)
3: H = AESK(0128)
4: S = C1H

m ⊕ · · · ⊕ CmH in GF(2128)
5: if T ̸= S ⊕ AESK(J0), abort (output nothing)
6: the output is P

Q.2 Assuming that a user encrypts a message with m larger than 232, show how an adversary
can recover the XOR of some plaintext blocks from the ciphertext (C, T ).

We have Ji+232 = Ji for all i. So, Ci+232 ⊕ Ci = Pi+232 ⊕ Pi.

Q.3 Assuming that a user encrypts two messages P and P ′ with the same nonce IV, show how
an adversary can recover a set of small cardinality which contains the authentication key
H. (For simplicity, we assume that P and P ′ have the same length.)

We use obvious notations by adding a ′ for values depending on P ′. If IV′ = IV, then
J ′
0 = J0. So, T

′ ⊕ T = S′ ⊕ S. With a tag of 128 bits, we obtain

T ′ ⊕ T = (C1 ⊕ C ′
1)H

m ⊕ · · · (Cm ⊕ C ′
m)H

By solving a polynomial equation, we recover H. We may recover up to m solutions.

Q.4 If the adversary knows a set of small cardinality to which H belongs, show how he can
decrypt any ciphertext (C, T ) with a nonce IV by a chosen ciphertext attack.

4



We write C = (C1, . . . , Cm). For each guess of H, the adversary sets C ′ =
(C1, . . . , Cm ⊕ 1128) and T ′ = T ⊕ H. If the decryption of (C ′, T ′) with nonce IV
does not abort, the adversary deduces that his guess for H is correct. Using the
small set of values, he can thus recover H. If the decryption is P ′ = (P ′

1, . . . , P
′
m),

then the adversary deduces AESK(Ji) = P ′
i ⊕ C ′

i, then Pi = Ci ⊕ AESK(Ji).

5



4 Prime Reuse in RSA

The following exercise is inspired from Mining your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices by Heninger, Durumeric, Wustrow,
Halderman, published in the proceedings of USENIX Security Symposium’12, 2012.

In this exercise, we consider a pool of D RSA keys with a modulus length of s bits.

We recall that the probability of a uniformly distributed random number in {1, . . . , n} to
be prime is approximately 1

lnn .

Q.1 Say how to check if two different RSA moduli use a prime factor p in common and why it
is a security problem.

Given two RSA moduli n and n′, we can easily compute gcd(n, n′) to see common
factors. If there is one in common, it will be the gcd.
It is a major security problem because if p = gcd(n, n′) can be computed, then we
can compute q = n/p and q′ = n′/p and deduce the RSA secret keys.

Q.2 Using truly random prime numbers, estimate the probability that there exist two RSA
keys on the Internet which have a prime factor in common (or estimate the number of
pairs with a common prime factor). Justify your answer precisely.

We have 2D prime number generations in total. The number of s
2 -bit prime numbers

is roughly m = 2
s
2 / ln 2

s
2 . We consider two ways to answer to this question.

– The expected number of collisions based on the birthday paradox is about

(2D)2

2
× 1

m
=

2D2

m

– The probability of having a collision in 2D trials in a set of m is

1−
(
1− 1

m

)2D2

≈ 1− e−
2D2

m ≈ 2D2

m

In both cases, we have
2D2

m
≈ sD22−

s
2 ln 2 ≈ 2−456

(For the numeric computation, we use the figures from the next question.) So, we
are almost sure never to see common prime factors.

Q.3 By scanning public keys over the Internet, one can find about D = 11 170 883 keys of size
s = 1024. We observed that 16 717 RSA keys share a common prime factor. What can we
deduce?

We deduce that the random generator is bad.

6



5 Subgroup Issues in the Diffie-Hellman Protocol

Let g be an element of a (multiplicative) Abelian group G and let ⟨g⟩ denote the subgroup
of G generated by g. Let q denote the order of g. Let n denote the order of G. We consider
the Diffie-Hellman protocol in which Alice picks a secret x ∈ Z∗

q , computes X = gx, sends
X to Bob. Bob picks a secret y ∈ Z∗

q , computes Y = gy, sends Y to Alice. Alice checks that
Y ∈ ⟨g⟩ and computes K = Y x. Bob checks that X ∈ ⟨g⟩ and computes K = Xy.

Let B be a given bound. Given q = qsql with qs = pα1
1 · · · pαr

r where the pi are pairwise
different “small” primes (i.e. pi ≤ B) and ql has no “small” factor except 1, we denote
FB(q) = {(p1, α1), . . . , (pr, αr)}.

We recall that we have “efficient” (i.e. polynomial in B+log q) partial factoring algorithms
to compute FB.

We also recall that if p is a “small” prime (i.e. p ≤ B) and g′ ∈ G is an element of order pα,
then there is an “efficient” (i.e. polynomial in αB) algorithm to compute the discrete logarithm
in ⟨g′⟩. More precisely, there is an algorithm L0 such that L0(B, p, α, g′, g′x) = x mod pα.

Q.1 If g has order q and (p1, α1) ∈ FB(q), show that there is an “efficient” algorithm to
compute x mod pα1

1 from gx. More precisely, show that there is an algorithm L1 such that
L1(B, q, p1, α1, g, g

x) = x mod pα1
1 for any x. Justify your answer.

Let L1(B, q, p1, α1, g, g
x) = L0(B, p1, α1, g

q/p
α1
1 , (gx)q/p

α1
1 ). Clearly, g′ = gq/p

α1
1 has

order pα1
1 and (gx)q/p

α1
1 = g′x mod p

α1
1 has a discrete logarithm equal to x mod pα1

1 .

Q.2 If g has order q = qsql with qs = pα1
1 · · · pαr

r where FB(q) = {(p1, α1), . . . , (pr, αr)},
show that there is an “efficient” algorithm to compute the modulo qs part of the dis-
crete logarithm in ⟨g⟩. More precisely, show that there is an algorithm L such that
L(B, q, g, gx) = x mod qs for any x. Justify your answer.

Once we compute x mod pαi
i = L1(B, q, pi, αi, g, g

x) we can recombine them into
x mod qs by using the Chinese Remainder Theorem.

Q.3 With the previous notation, show that if instead of picking x in Z∗
q Alice picks x uniform

in {1, . . . , qs − 1} ∩ Z∗
q , then a passive adversary can recover x.

We have L(B, q, g,X) = x mod qs = x when x < qs so we can compute x easily in
that case.

Q.4 We now assume that y is a static key (i.e. Bob runs many sessions of the protocol by using
the same value y). We consider that after the Diffie-Hellman protocol, Bob sends the
encryption of a known message m (e.g. the null message m = 0) with the key KDF(Xy).
Encryption is done using a deterministic symmetric encryption. We write n = pqr where
p is a “small” prime (i.e. p ≤ B).
Show that if Bob does not verify that X ∈ ⟨g⟩, an active adversary can recover y mod p
by malciously selecting X.

By choosing X set to an element of order p in G, there will be only p possible values
for Xy so the adversary can make an exhaustive search using EncKDF(Xy)(0) and
obtain y mod p.

7


