Cryptography and Security - Midterm Exam

Serge Vaudenay

9.12.2016

- duration: 1h45
- no documents allowed, except one 2 -sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil

1 An Attempt to Fix Double Encryption

We consider a block cipher C over n-bit blocks with a key of n bits. We define $\operatorname{Enc}_{K_{1}, K_{2}, K_{3}}(x)=$ $C_{K_{3}}\left(C_{K_{1}}(x) \oplus K_{2}\right)$ where \oplus is the bitwise XOR operation. This defines a new block cipher with n-bit blocks and $3 n$-bit keys. We consider key recovery known plaintext attacks against Enc using r pairs $\left(x_{i}, y_{i}\right)$ such that $y_{i}=\operatorname{Enc}_{K_{1}, K_{2}, K_{3}}\left(x_{i}\right)$ for $i=1, \ldots, r$.

Throughout this exercise, we measure the time complexity in terms of number of C or C^{-1} operations.
Q. 1 In this question, we assume that K_{2} is fixed and equal to 0 .
Q.1a Show that the equation $y_{i}=\operatorname{Enc}_{K_{1}, K_{2}, K_{3}}\left(x_{i}\right)$ can be written in the form $f_{i}\left(K_{1}\right)=$ $g_{i}\left(K_{3}\right)$ for some functions f_{i} and g_{i}.
Q.1b Using the previous question, describe an attack method with time complexity of order of magnitude 2^{n}. (Justify the complexity.)
Q.1c Analyze the probability of success (the probability that it produces the correct solution and only the correct one). Propose (and justify) a minimal value for r to produce a good result.
Q. 2 We now assume that K_{2} is part of the secret with n bits of entropy.
Q.2a Show that the attack of the previous question can be directly adapted to obtain an attack of complexity $2^{2 n}$.
\square
Q.2b Show that two equations $y_{i}=\operatorname{Enc}_{K_{1}, K_{2}, K_{3}}\left(x_{i}\right)$ and $y_{j}=\operatorname{Enc}_{K_{1}, K_{2}, K_{3}}\left(x_{j}\right)$ imply an equation which can be written in the form $f_{i, j}\left(K_{1}\right)=g_{i, j}\left(K_{3}\right)$ for some functions $f_{i, j}$ and $g_{i, j}$.
Q.2c Deduce an attack method of complexity 2^{n} and make the analysis like in Q.1c.

2 The Hill Cipher

Let d be an integer. We define the Hill cipher with security parameter d as follows. The message space is \mathbf{Z}_{26}^{d}. Messages are strings of d alphabetical characters encoded into \mathbf{Z}_{26}. The key space is the set of invertible $d \times d$ matrices over \mathbf{Z}_{26}. Given a key K and a message X, the encryption of X under K is $\operatorname{Enc}_{K}(X)=K \times X$ with operations modulo 26 .
Q. 1 Explain how the decryption works.
Q. 2 Propose a chosen plaintext key recovery attack with complexity $\mathcal{O}\left(d^{2}\right)$ using d chosen plaintexts. (Justify the complexity.)
HINT: assume that read/write of a \mathbf{Z}_{26} element costs $\mathcal{O}(1)$ complexity.
Q. 3 Given d known plaintext/ciphertext pairs $\left(X_{i}, Y_{i}\right)$ for $i=1, \ldots, d$, propose a key recovery attack of complexity $\mathcal{O}\left(d^{4}\right)$ when $d \rightarrow+\infty$ and prove the complexity.
WARNING: d^{4} is lower than d^{7} !
HINT: assume that the X_{i} vectors are linearly independent!

3 Attribute-Based Encryption

We use an attribute-based encryption scheme. It allows to encrypt a message respective to a set of attributes att' so that only people having privileges for at least d of these attributes can decrypt the ciphertext. People receive a secret sk corresponding to the list of attributes att that they have. Decryption works only when $\#\left(\mathrm{att} \cap \mathrm{att}^{\prime}\right) \geq d$. For instance, an attribute age could represent people over 25 , an attribute licence could represent people owning a driving licence. To rent a car, customers should get an ignition key M which is encrypted for people being over 25 and with a driving licence, so with att ${ }^{\prime}=\{$ age, licence $\}$. Only people with att including these two privileges should be able to decrypt it and take a car. So, we would set $d=2$. To use this scheme, an authority generates the master secret msk and the master public key mpk using Setup. Then, it gives attributes att to users and gives them a secret key sk to allow them to decrypt some ciphertexts. Finally, an encryption function using mpk and a set of attributes att ${ }^{\prime}$ can encrypt messages.

We consider (multiplicative) groups G_{1} and G_{2} of prime order p and a bilinear map

$$
e: G_{1} \times G_{1} \rightarrow G_{2}
$$

We recall that it means that we have

$$
e\left(u^{a} v^{b}, w\right)=e(u, w)^{a} e(v, w)^{b} \quad \text { and } \quad e\left(u, v^{a} w^{b}\right)=e(u, v)^{a} e(u, w)^{b}
$$

for all $u, v, w \in G_{1}$ and $a, b \in \mathbf{Z}$. We let g be a generator of G_{1}. We assume that $e(g, g)$ is a generator of G_{2}. We consider the following algorithms.
$\operatorname{Setup}(d, n) \rightarrow($ msk, mpk)
1: pick $t_{1}, \ldots, t_{n} \in \mathbf{Z}_{p}^{*}$ and $y \in \mathbf{Z}_{p}$ at random
2: set $T_{i}=g^{t_{i}}, i=1, \ldots, n$ and $Y=e(g, g)^{y}$
3: set mpk $=\left(d, T_{1}, \ldots, T_{n}, Y\right)$ and msk $=\left(t_{1}, \ldots, t_{n}, y\right)$
Gen $(\mathrm{msk}$, att $) \rightarrow$ sk $\quad\left\{\mathrm{msk}=\left(t_{1}, \ldots, t_{n}, y\right)\right.$, att $\subseteq\{1, \ldots, n\}$ non empty $\}$
1: pick some random polynomial $q \in \mathbf{Z}_{p}[x]$ of degree at most $d-1$ such that $q(0)=y$ in \mathbf{Z}_{p}
2: set $D_{i}=g^{\frac{q(i)}{t_{i}}}$ for $i \in$ att
3: set sk $=\left(D_{i}\right)_{i \in \text { att }}\left\{\right.$ the list of all D_{i} for $i \in$ att $\}$
$\operatorname{Enc}\left(\mathrm{mpk}, \mathrm{att}^{\prime}, M\right) \rightarrow \mathrm{ct} \quad\left\{\mathrm{mpk}=\left(d, T_{1}, \ldots, T_{n}, Y\right), \mathrm{att}^{\prime} \subseteq\{1, \ldots, n\}\right.$ non empty, $\left.M \in G_{2}\right\}$
1: pick $s \in \mathbf{Z}_{p}$ at random
2: set $E^{\prime}=M Y^{s}$ and $E_{i}=T_{i}^{s}$ for $i \in \operatorname{att}^{\prime}$
3: set ct $=\left(E^{\prime},\left(E_{i}\right)_{i \in \text { att }^{\prime}}\right)\left\{E^{\prime}\right.$ and the list of all E_{i} for $\left.i \in \operatorname{att}^{\prime}\right\}$
Q. 1 Let $i \neq j$ be two attributes. Show that there exist some $\lambda_{i, j}, \mu_{i, j} \in \mathbf{Z}_{p}$ such that

$$
\forall a, b \in \mathbf{Z}_{p} \quad \lambda_{i, j}(a i+b)+\mu_{i, j}(a j+b)=b \quad(\bmod p)
$$

Q. 2 In this question, we assume that $d=2$.

Specify a decryption algorithm $\operatorname{Dec}(\mathrm{mpk}, \mathrm{sk}, \mathrm{ct}) \rightarrow M^{\prime}$ such that for all M, att, $i, j \in$ att such that $i \neq j$, when we run
1: $\operatorname{Setup}(d, n) \rightarrow$ (msk, mpk)
2: Gen(msk, att) \rightarrow sk
3: $\operatorname{Enc}(\mathrm{mpk},\{i, j\}, M) \rightarrow \mathrm{ct}$
4: $\operatorname{Dec}(\mathrm{mpk}, \mathrm{sk}, \mathrm{ct}) \rightarrow M^{\prime}$
then we always have $M^{\prime}=M$.
Q. 3 More generally, let $I=\left\{i_{1}, \ldots, i_{d}\right\} \subseteq\{1, \ldots, n\}$ be a subset of size d. Show that there exists a function $\lambda_{I}: I \rightarrow \mathbf{Z}_{p}$ such that

$$
\forall q \in \mathbf{Z}_{p}[x] \quad \operatorname{deg}(q) \leq d-1 \Longrightarrow \lambda_{I}\left(i_{1}\right) q\left(i_{1}\right)+\cdots+\lambda_{I}\left(i_{d}\right) q\left(i_{d}\right)=q(0) \quad(\bmod p)
$$

(q is a polynomial of degree up to $d-1$).
Q. 4 Specify a decryption algorithm $\operatorname{Dec}(\mathrm{mpk}, \mathrm{sk}, \mathrm{ct}) \rightarrow M^{\prime}$ such that for all d, n, M, att, att ${ }^{\prime}$ such that $\#\left(\operatorname{att} \cap \mathrm{att}^{\prime}\right) \geq d$, when we run
1: $\operatorname{Setup}(d, n) \rightarrow$ (msk, mpk)
2: Gen(msk, att) \rightarrow sk
3: $\mathrm{Enc}\left(\mathrm{mpk}, \mathrm{att}^{\prime}, M\right) \rightarrow \mathrm{ct}$
4: $\operatorname{Dec}(\mathrm{mpk}, \mathrm{sk}, \mathrm{ct}) \rightarrow M^{\prime}$
then we always have $M^{\prime}=M$.

