Cryptography and Security — Midterm Exam

Serge Vaudenay

9.12.2016

- duration: 1h45
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will $\underline{\mathbf{not}}$ answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil

1 An Attempt to Fix Double Encryption

We consider a block cipher C over n-bit blocks with a key of n bits. We define $\operatorname{Enc}_{K_1,K_2,K_3}(x) = C_{K_3}(C_{K_1}(x) \oplus K_2)$ where \oplus is the bitwise XOR operation. This defines a new block cipher with n-bit blocks and 3n-bit keys. We consider key recovery known plaintext attacks against Enc using r pairs (x_i, y_i) such that $y_i = \operatorname{Enc}_{K_1,K_2,K_3}(x_i)$ for $i = 1, \ldots, r$.

Throughout this exercise, we measure the time complexity in terms of number of C or C^{-1} operations.

Q.1 In this question, we assume that K_2 is fixed and equal to 0.

Q.1a Show that the equation $y_i = \text{Enc}_{K_1, K_2, K_3}(x_i)$ can be written in the form $f_i(K_1) = g_i(K_3)$ for some functions f_i and g_i .

Q.1b Using the previous question, describe an attack method with time complexity of order of magnitude 2^n . (Justify the complexity.)

Q.1c Analyze the probability of success (the probability that it produces the correct solution and only the correct one). Propose (and justify) a minimal value for r to produce a good result.

Q.2 We now assume that K_2 is part of the secret with n bits of entropy.

Q.2a Show that the attack of the previous question can be directly adapted to obtain an attack of complexity 2^{2n} .

Q.2b Show that two equations $y_i = \text{Enc}_{K_1,K_2,K_3}(x_i)$ and $y_j = \text{Enc}_{K_1,K_2,K_3}(x_j)$ imply an equation which can be written in the form $f_{i,j}(K_1) = g_{i,j}(K_3)$ for some functions $f_{i,j}$ and $g_{i,j}$.

Q.2c Deduce an attack method of complexity 2^n and make the analysis like in Q.1c.

2 The Hill Cipher

Let d be an integer. We define the Hill cipher with security parameter d as follows. The message space is \mathbf{Z}_{26}^d . Messages are strings of d alphabetical characters encoded into \mathbf{Z}_{26} . The key space is the set of invertible $d \times d$ matrices over \mathbf{Z}_{26} . Given a key K and a message X, the encryption of X under K is $\mathsf{Enc}_K(X) = K \times X$ with operations modulo 26.

Q.1 Explain how the decryption works.

Q.2 Propose a chosen plaintext key recovery attack with complexity $\mathcal{O}(d^2)$ using d chosen plaintexts. (Justify the complexity.) HINT: assume that read/write of a \mathbb{Z}_{26} element costs $\mathcal{O}(1)$ complexity. **Q.3** Given d known plaintext/ciphertext pairs (X_i, Y_i) for i = 1, ..., d, propose a key recovery attack of complexity $\mathcal{O}(d^4)$ when $d \to +\infty$ and prove the complexity. WARNING: d^4 is lower than d^7 ! HINT: assume that the X_i vectors are linearly independent!

3 **Attribute-Based Encryption**

We use an *attribute-based* encryption scheme. It allows to encrypt a message respective to a set of attributes att' so that only people having privileges for at least d of these attributes can decrypt the ciphertext. People receive a secret sk corresponding to the list of attributes att that they have. Decryption works only when $\#(\operatorname{att} \cap \operatorname{att}') > d$. For instance, an attribute age could represent people over 25, an attribute licence could represent people owning a driving licence. To rent a car, customers should get an ignition key M which is encrypted for people being over 25 and with a driving licence, so with $att' = \{age, licence\}$. Only people with att including these two privileges should be able to decrypt it and take a car. So, we would set d=2. To use this scheme, an authority generates the master secret msk and the master public key mpk using Setup. Then, it gives attributes att to users and gives them a secret key sk to allow them to decrypt some ciphertexts. Finally, an encryption function using mpk and a set of attributes att' can encrypt messages.

We consider (multiplicative) groups G_1 and G_2 of prime order p and a bilinear map

$$e: G_1 \times G_1 \to G_2$$

We recall that it means that we have

$$e(u^av^b,w)=e(u,w)^ae(v,w)^b \quad \text{and} \quad e(u,v^aw^b)=e(u,v)^ae(u,w)^b$$

for all $u, v, w \in G_1$ and $a, b \in \mathbb{Z}$. We let g be a generator of G_1 . We assume that e(g, g) is a generator of G_2 . We consider the following algorithms.

$\mathsf{Setup}(d,n) \to (\mathsf{msk},\mathsf{mpk})$

- 1: pick $t_1, \ldots, t_n \in \mathbf{Z}_p^*$ and $y \in \mathbf{Z}_p$ at random
- 2: set $T_i = g^{t_i}, i = 1, ..., n$ and $Y = e(g, g)^y$
- 3: set $mpk = (d, T_1, ..., T_n, Y)$ and $msk = (t_1, ..., t_n, y)$

 $\mathsf{Gen}(\mathsf{msk},\mathsf{att}) \to \mathsf{sk} \quad \{\mathsf{msk} = (t_1, \dots, t_n, y), \, \mathsf{att} \subseteq \{1, \dots, n\} \text{ non empty} \}$

- 1: pick some random polynomial $q \in \mathbf{Z}_p[x]$ of degree at most d-1 such that q(0) = y in \mathbf{Z}_p 2: set $D_i = g^{\frac{q(i)}{t_i}}$ for $i \in \mathsf{att}$
- 3: set $\mathsf{sk} = (D_i)_{i \in \mathsf{att}}$ {the list of all D_i for $i \in \mathsf{att}$ }
- $\mathsf{Enc}(\mathsf{mpk},\mathsf{att}',M) \to \mathsf{ct} \quad \{\mathsf{mpk} = (d,T_1,\ldots,T_n,Y), \mathsf{att}' \subseteq \{1,\ldots,n\} \text{ non empty, } M \in G_2\}$ 1: pick $s \in \mathbf{Z}_p$ at random
- 2: set $E' = MY^s$ and $E_i = T_i^s$ for $i \in \mathsf{att}'$
- 3: set $\mathsf{ct} = (E', (E_i)_{i \in \mathsf{att}'}) \{E' \text{ and the list of all } E_i \text{ for } i \in \mathsf{att}'\}$

Q.1 Let $i \neq j$ be two attributes. Show that there exist some $\lambda_{i,j}, \mu_{i,j} \in \mathbb{Z}_p$ such that

 $\forall a, b \in \mathbf{Z}_p$ $\lambda_{i,j}(ai+b) + \mu_{i,j}(aj+b) = b \pmod{p}$

Q.2 In this question, we assume that d = 2.

Specify a decryption algorithm $\mathsf{Dec}(\mathsf{mpk},\mathsf{sk},\mathsf{ct}) \to M'$ such that for all M, att, $i, j \in \mathsf{att}$ such that $i \neq j$, when we run

1: $\mathsf{Setup}(d, n) \to (\mathsf{msk}, \mathsf{mpk})$

 $2: \ \mathsf{Gen}(\mathsf{msk},\mathsf{att}) \to \mathsf{sk}$

3: Enc(mpk, $\{i, j\}, M$) \rightarrow ct 4: Doc(mpk sk st) $\rightarrow M'$

4:
$$\mathsf{Dec}(\mathsf{mpk},\mathsf{sk},\mathsf{ct}) \to M$$

then we always have M' = M.

Q.3 More generally, let $I = \{i_1, \ldots, i_d\} \subseteq \{1, \ldots, n\}$ be a subset of size d. Show that there exists a function $\lambda_I : I \to \mathbf{Z}_p$ such that

$$\forall q \in \mathbf{Z}_p[x] \qquad \deg(q) \le d - 1 \Longrightarrow \lambda_I(i_1)q(i_1) + \dots + \lambda_I(i_d)q(i_d) = q(0) \pmod{p}$$

(q is a polynomial of degree up to d-1).

- **Q.4** Specify a decryption algorithm $\mathsf{Dec}(\mathsf{mpk},\mathsf{sk},\mathsf{ct}) \to M'$ such that for all d, n, M, att, att' such that $\#(\mathsf{att} \cap \mathsf{att}') \ge d$, when we run
 - 1: $\mathsf{Setup}(d, n) \to (\mathsf{msk}, \mathsf{mpk})$
 - 2: $Gen(msk, att) \rightarrow sk$
 - 3: $\mathsf{Enc}(\mathsf{mpk},\mathsf{att}',M) \to \mathsf{ct}$
 - 4: $\mathsf{Dec}(\mathsf{mpk},\mathsf{sk},\mathsf{ct}) \to M'$

then we always have M' = M.