
Cryptography and Security — Final Exam

Solution

Serge Vaudenay

28.1.2019

– duration: 3h

– no documents allowed, except one 2-sided sheet of handwritten notes

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 The Mersenne Cryptosystem

The following exercise is inspired from A New Public-Key Cryptosystem via
Mersenne Numbers by Aggarwal, Joux, Prakash, and Santha, published in the pro-
ceedings of CRYPTO 2018.

In what follows, p denotes a prime number of form p = 2n − 1. It is called a Mersenne prime.
Elements in Zp are represented by numbers between 0 and p−1. Given x ∈ Zp, W (x) denotes
the number of 1’s when writing the element x in binary.

Q.1 For all x ∈ Z∗
p, prove that W (−x mod p) = n−W (x).

The number p consists of n bits all equal to 1, when written in binary. Hence, p−x is
the same operation as flipping all the n bits of x individually. When x > 0, −x mod p
is p − x. Hence, W (x) +W (−x mod p) will add all the n bits of 1 which are in p,
i.e. W (x) +W (−x mod p) = n.

Q.2 For all x, y ∈ Zp, prove that W (x+ y mod p) ≤ W (x) +W (y).

HINT: first consider y = 1, then W (y) = 1, then proceed by induction.

We have 0 ≤ x < p, so there must be at least one 0 bit in the binary representation
of x. We write x = x′∥0∥11 · · · 1 in binary, where the number of consecutive 1 in the
least significant bits is i. For y = 1, computing x + y mod n results in x′∥1∥00 · 0
in binary. Hence, W (x + 1 mod p) = W (x′) + 1 = W (x) + 1 − i ≤ W (x) + 1. This
shows the y = 1 case.
Multiplying by 2 modulo p consists of rotating all bits circularly. Hence,

W (z2i mod p) = W (z)

for all z and i.
For W (y) = 1, we have y = 2i. Thanks to the previous observation,

W (x+ y mod p) = W ((x+ y)2−i mod p) = W (x2−i + 1 mod p)

Due to the y = 1 case, we obtain

W (x+ y mod p) ≤ W (x2−i mod p) + 1 = W (x) + 1

This shows the W (y) = 1 case.
We proceed by induction on W (y). This is quite trivial for W (y) = 0 as it means
y = 0. We have proven it for W (y) = 1.
Assuming this is true for W (y) − 1, we let i be the index of one bit of y equal to 1
and we write y = y′ + 2i. Clearly, W (y′) = W (y)− 1. We have W (x+ y′ mod p) ≤
W (x) +W (y)− 1 by induction. Then,

W (x+y mod p) = W ((x+y′ mod p)+2i mod p) ≤ W (x+y′ mod p)+1 ≤ W (x)+W (y)

Q.3 For all x, y ∈ Zp, prove that W (x× y mod p) ≤ W (x)×W (y).
HINT: use binary and show W (x2j mod p) = W (x).

We have already shown W (x2j mod p) = W (x) in the previous question.

We write y =
∑W (y)

i=1 2ji. We have

x× y ≡
W (y)∑
i=1

x2ji (mod p)

We have W (x2ji mod p) = W (x). Hence, W (x × y mod p) ≤ W (x) + · · · + W (x)
(W (y) times).

Q.4 In what follows, h denotes a positive integer such that 4h2 < n.
After the parameters n, p, and h are set up, we define the following algorithms:

Gen(n, p, h):
1: pick F,G ∈ Zp random such that W (F) = W (G) = h
2: set pk = F

G mod p and sk = G
3: output pk and sk

2

Enc(pk, b):
4: pick A,B ∈ Zp random such that W (A) = W (B) = h
5: set ct =

(
(−1)b × (A× pk+B)

)
mod p

6: output ct

where b is a plaintext from the space {0, 1} (i.e. we encrypt only one bit).

Design a decryption algorithm and prove it is correct.

We define

Dec(sk, ct):
1: compute x = sk× ct mod p
2: compute pt = 1W (x)>n

2

3: output pt

Indeed, if the computation is done correctly, we have

x ≡ G× (−1)b × (A× pk+B) ≡ (−1)b × (A× F +B ×G) (mod p)

We have W (A×F +B×G mod p) ≤ 2h2 < n
2 . So, if b = 0, we obtain W (x) ≤ 2h2.

For b = 1 and x ̸= 0, we obtain W (x) ≥ n − 2h2 > n
2 . To show that decryption is

perfectly correct, it remains to show that x = 0 cannot happen.
If x = 0, then A×F ≡ −B×G. We have B×G mod p ̸= 0, so W (−B×G mod p) =
n−W (B×G mod p) ≥ n−h2. We also have W (A×F mod p) ≤ h2. Since h2 < n−h2,
we cannot have A× F ≡ −B ×G. Therefore, x ̸= 0.

Q.5 As a toy example, take n = 17, p = 131 071, h = 2. Generate a key pair using F = 214+22

and G = 210 + 26. Then, encrypt b = 1 using A = 211 + 25 and B = 29 + 22. Detail the
computations and give, pk, sk, ct.

HINT1: for people who have a 4-operation calculator: a× 2n + b ≡ a+ b (mod 2n − 1).

HINT2: by thinking of how multiplication by 2 works modulo p, find a trick to perform
the division by 2.

HINT3: 1
17 mod p = 123 361.

3

We have 2n ≡ 1 so a × 2n + b ≡ a + b, modulo 2n − 1. Hence, after an integer
multiplication, we can write a number in the form a× 2n + b and perform a modulo
p reduction easily, by just adding a and b then iterating if it is still larger than p.
Multiplication by 2 is just a circular bit rotation to the left. Hence, division by 2 is
a circular bit rotation to the right. To divide a number by 2, it is easy if it is even.
If x is odd, we can just compute x−1

2 + 1
2 . Given that 1

2 ≡ 2n−1 (mod p), we obtain

x

2
≡ x− 1

2
+ 2n−1 (mod p)

To invert a number, we could use the Extended Euclid Algorithm. Here, we give as
a hint that 1

17 mod p = 123 361.
We have sk = 210 + 26 = 1088,

pk =
214 + 22

210 + 26
mod p

=
212 + 1

24 × 17
mod p

=
4097× 1

17

24
mod p

=
4097× 123 361

24
mod p

=
505 410 017

24
mod p

=
3855× 217 + 127 457

24
mod p

=
3855 + 127 457

24
mod p

=
131 312

24
mod p

=
1× 217 + 240

24
mod p

=
241

24
mod p

=
240

24
+

216

23
mod p

= 15 + 8 192 mod p

= 8207

= 0x200f

and

ct = −((211+25)×8 207+(29+22)) mod p = −(130+31 716) mod p = 99 225 = 18399

We can check that
ct× sk mod p = 85 367 = 0x14d77

has weight 11 so decrypts to 1.

4

2 Collision Attack on CBC Mode

The following exercise is inspired from On the Practical (In-)Security of 64-bit Block
Ciphers: Collision Attacks on HTTP over TLS and OpenVPN by Bhargavan and
Leurent, published in the proceedings of ACM CCS 2016.

We consider TLS using a block cipher with n-bit message blocks in CBC mode. The goal of
this exercise is to develop message recovery attacks, or at least to recover a sensitive part of
a partially-known plaintext.

Q.1 Given 2d independent and uniformly distributed random variables X1, . . . , X2d with values
in {0, 1}n, what is the expected number of pairs (i, j) with i < j such that Xi = Xj?

We have
(
2d

2

)
= 2d−1(2d − 1) ≈ 22d−1 possible pairs. Each satisfies Xi = Xj with

probability 2−n. Hence, the expected number of pairs is roughly 22d−n−1.

Q.2 Given 2s independent and uniformly distributed random variables X1, . . . , X2s and 2t

independent and uniformly distributed random variables Y1, . . . , Y2t , all with values in
{0, 1}n, what is the expected number of pairs (i, j) such that Xi = Yj?

We have 2s+t possible pairs, so 2s+t−n expected pairs with collision.

Q.3 Consider a list of plaintexts of 2d blocks in total. We assume that all blocks can be split
into three categories: blocks which are already known by the adversary (we denote by α the
fraction of blocks in this category), blocks which are privacy-sensitive thus an interested
target for the adversary (we denote by β the fraction of blocks in this category), and other
blocks which are unknown but uninteresting to recover (within a fraction 1− α− β). All
ciphertext blocks are known by the adversary.

Assuming that the inputs of the block cipher are independent and uniform, design an
attack which recovers some privacy-sensitive blocks. How large must 2d be in order for
the expected number of recovered sensitive blocks to be 1? Compute the data complexity
2d in terms of n, α, and β.

HINT: encryption uses the CBC mode.

We denote by Z the ciphertext blocks. If the adversary observes a collision Zi = Zj,
then he deduces Zi−1⊕Zj−1 = Xi⊕Xj due to the CBC structure. If i is the index of
a known block and j is the index of a sensitive one, he deduces Xj because he knows
Xi. Here, we match α2d ciphertext blocks with index of a known plaintext block with
β2d ciphertext blocks with index of a sensitive block. Thanks to the previous question,
the expected number of pairs is αβ22d−n. Hence, we take 2d = 2n/2/

√
αβ to obtain

one.

Q.4 Assuming that the encryption key changes every 2r blocks, adapt the previous attack
and estimate its data complexity. Application: how much data do we need for n = 64,
α = β = 1

2 , r = n
2 ?

5

The previous attack can only use 2d = 2r blocks. We repeat it 2n−2r/(αβ) times to
obtain one interesting collision. Hence, the data needed consists of 2n−r/(αβ) blocks.
For the proposed parameters, this is 234 blocks of 64 bits, i.e. 128GB.

Q.5 We now assume that a plaintext of 2u blocks is encrypted many times (with a random
IV). We assume that all blocks but k sensitive ones are known by the adversary and that
k ≪ 2u. However, the purpose is now to recover all sensitive blocks. Estimate the data
complexity (in blocks) in terms of n, u, and k.

We take α ≈ 1 and β = k2−u. Given one particular sensitive block, the probability
of not recovering it after D encryptions of the same message is roughly

(1− 2−n)D
22u ≈ e−D22u−n

Thus, the probability to recover all blocks is roughly(
1− e−D22u−n

)k
≈ e−e(ln k)−D22u−n

Hence, we should use D =
√
ln k2

n−u
2 . The data complexity is thus of

√
ln k2

n+u
2

blocks.

6

3 PKC vs KEM vs KA

In this exercise, we compare Public-Key Cryptosystems (PKC), Key Encapsulation Mecha-
nisms (KEM), and non-interactive Key Agreement schemes (KA). We formalize the interface
for each of the three primitives:

PKC

– Setup
$−→ pp

– Gen(pp)
$−→ (pk, sk)

– Enc(pk, pt)
$−→ ct

– Dec(sk, ct) → pt/⊥

KEM

– Setup
$−→ pp

– Gen(pp)
$−→ (pk, sk)

– Enc(pk)
$−→ (K, ct)

– Dec(sk, ct) → K/⊥

KA

– Setup
$−→ pp

– GenA(pp)
$−→ (pkA, skA)

– GenB(pp)
$−→ (pkB, skB)

– KAA(skA, pkB) → K/⊥
– KAB(skB, pkA) → K/⊥

The notation
$−→ means that the function is probabilistic while → is for deterministic ones.

The notation K/⊥ means that either some K or an error message ⊥ is returned.

Q.1 Define the correctness notion for each of the three primitives.

Correctness implies that for all random coins, the following experiments always re-
turn 1:

PKC

1: Setup
$−→ pp

2: Gen(pp)
$−→ (pk, sk)

3: pick pt at random

4: Enc(pk, pt)
$−→ ct

5: Dec(sk, ct) → x
6: return 1x=pt

KEM

1: Setup
$−→ pp

2: Gen(pp)
$−→ (pk, sk)

3: Enc(pk)
$−→ (K, ct)

4: Dec(sk, ct) → x
5: return 1x=K

KA

1: Setup
$−→ pp

2: GenA(pp)
$−→ (pkA, skA)

3: GenB(pp)
$−→ (pkB, skB)

4: KAA(skA, pkB) → K
5: KAB(skB, pkA) → x
6: return 1x=K

Q.2 The INDCPA security notion was defined for PKC in the course. We make a slight change
and give a new definition: A PKC is (t, ε)-INDCPAror-secure if for all probabilistic adver-
sary A limited to a time complexity of t, we have

Pr[x = 1|b = 0]− Pr[x = 1|b = 1] ≤ ε

where b is an input bit and x is the output of the following procedure, and the probability
is over all probabilistic operations:

1: input b

2: Setup
$−→ pp

3: Gen(pp)
$−→ (pk, sk)

4: pick coins at random
5: A(pp, pk; coins) → pt0
6: pick pt1 at random, of same length at pt0

7: Enc(pk, ptb)
$−→ ct

8: A(pp, pk, ct; coins) → x
9: return x

7

What was changed, compared to the INDCPA definition from the course?

Discuss on the importance of the change.

In the definition from the course, the adversary chooses both pt0 and pt1. Here, the
adversary chooses only pt0 while pt1 is random and unknown to the adversary.
We could prove that both security notions are equivalent as follows. (Students are not
expected to answer this.) Indeed, an adversary in the ror game can be transformed
into an adversary in the previous definition (just generate pt1 with fresh coins). The
converse is less direct but still easy: given an adversary generating (pt0, pt1), we can
pick a random bit a and issue pta to produce as an output. The final x from the old
adversary is returned as the output y = x⊕ a by the new adversary by XORing with
a. We have Pr[y = b|b = 1] = Pr[x = a⊕ 1|b = 1] = 1

2 because the computation of x
does not use a at all, so is independent. Hence, the advantage of the new adversary
is

Pr[y = 1|b = 0]− Pr[y = 1|b = 1] = 1− 2Pr[y = b] =
1

2
− Pr[y = b|b = 0]

We have that

1− 2Pr[y = b|b = 0] = Pr[x = 1|a = 0, b = 0]− Pr[x = 1|a = 1, b = 0]

which is the advantage of the old adversary. Hence, the new adversary has an ad-
vantage which is half of the old one.

Q.3 We define the KEM security as follows. A KEM is (t, ε)-INDCPAror-secure if for all prob-
abilistic adversary A limited to a time complexity of t, we have

Pr[x = 1|b = 0]− Pr[x = 1|b = 1] ≤ ε

where b is an input bit and x is the output of the following procedure, and the probability
is over all random coins:

1: input b

2: Setup
$−→ pp

3: Gen(pp)
$−→ (pk, sk)

4: Enc(pk)
$−→ (K0, ct)

5: pick K1 at random of same length as K0

6: A(pp, pk, ct,Kb)
$−→ x

7: return x

Given a PKC, construct a KEM.

Prove that if the PKC is correct, then the KEM is correct.

Prove that there exists a constant τ such that for all t and ε, if the PKC is (t, ε)-INDCPAror-
secure, then the KEM is (t− τ, ε)-INDCPAror-secure.

8

We define Setup, Gen, and Dec the same as in the PKC. Then, we de-
fine

KEM.Enc(pk):
1: pick K at random

2: PKC.Enc(pk,K)
$−→ ct

3: return (K, ct)

If we write the correctness experiment for KEM, so with KEM.Enc, and if we expand
KEM.Enc as the two lines of code above, we obtain exactly the correctness experiment
for PKC with PKC.Enc. Hence, the two experiments are indeed the same. When fed
with the same random source, they produce the same output. So, if PKC is correct,
it always returns 1. Therefore, the KEM is correct.
We consider an adversary A against the KEM and we define an adversary B against
the PKC.

B(pp, pk, ct; coins):
1: pick pt at random using the first coins in coins and remove them from coins
2: if input ct is not present then
3: return pt
4: else
5: A(pp, pk, ct, pt; coins) → x
6: return x
7: end if

The complexity of B is the complexity of A plus a small overhead τ for all steps but
Step 5. If A has complexity bounded by t− τ , then B has complexity bounded by t.
If b = 0, we can clearly see that the INDCPAror game against PKC with B is exactly
the INDCPAror game against KEM with A. So, Pr[x = 1|b = 0] is the same. If now
b = 1, we compare the INDCPAror game against PKC with B (left) is exactly the
INDCPAror game against KEM with A (right):

1: Setup
$−→ pp

2: Gen(pp)
$−→ (pk, sk)

3: pick coins at random
4: pick pt at random using the first

coins in coins and remove them
from coins

5: pick pt1 at random, of same
length at pt

6: Enc(pk, pt1)
$−→ ct

7: A(pp, pk, ct, pt; coins) → x
8: return x

1: Setup
$−→ pp

2: Gen(pp)
$−→ (pk, sk)

3: pick K0 at random

4: Enc(pk,K0)
$−→ ct

5: pick K1 at random of same
length as K0

6: A(pp, pk, ct,K1)
$−→ x

7: return x

We can see that K0 plays the role of pt1 and that K1 plays the role of pt. There is an
invertible mapping of the random source from left to right making Pr[x = 1|b = 1]
the same. Hence, Pr[x = 1|b = 0] − Pr[x = 1|b = 1] is the same. So, the KEM is
secure as well.

Q.4 Propose a definition for the INDCPAror-security of KA. Given a correct KA, construct a
correct KEM.

9

Show that with the same method as in the previous question, we prove that there exists a
constant τ such that for all t and ε, if the KA is (t, ε)-INDCPAror-secure, then the KEM
is (t− τ, ε)-INDCPAror-secure.

We define it for KA as follows. A KA is (t, ε)-INDCPA-secure if for all probabilistic
adversary A limited to a time complexity of t, we have

Pr[x = 1|b = 0]− Pr[x = 1|b = 1] ≤ ε

where b is an input bit and x is the output of the following procedure, and the
probability is over all random coins:

1: input b

2: Setup
$−→ pp

3: GenA(pp)
$−→ (pkA, skA)

4: GenB(pp)
$−→ (pkB, skB)

5: KAA(skA, pkB) → K0

6: pick K1 at random

7: A(pp, pkA, pkB,Kb)
$−→ x

8: return x

We define Setup the same as in the KA. Then, we define Gen = GenB
and

Enc(pk):

1: GenA
$−→ (ct, skA)

2: KAA(skA, pk) → K
3: return (K, ct)

Dec(sk, ct):
4: KAB(sk, ct) → K
5: return K

The same proof as in the previous question shows that if the KA is correct, then the
KEM is correct, and if the KA is secure, then the KEM is secure.

10

