
Cryptography and Security — Final Exam

Serge Vaudenay

24.1.2020

– duration: 3h
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 On Combining Two Hash Functions by Concatenation

In what follows, C is a compression function mapping a d-bit chaining value h and a ℓ-bit
message block x to a d-bit value C(h, x). Given the ℓ-bit blocks x1, . . . , xn, we define

H(x1, . . . , xn) = C(. . . C(C(0d, x1), x2) . . . , xn)

where 0d is the bitstring of d bits with all bits set to 0.

Q.1 We assume that there is an algorithm A(h) → (x, x′) which, from h, produces a random
pair of different ℓ-bit blocks x and x′ such that C(h, x) = C(h, x′). We let T be the
complexity of running the algorithm A.
For n ≤ d, construct an algorithm, of complexity T multiplied by something small (i.e.
less than P (d) for some polynomial P ), which returns xi,j (i = 1, . . . , n, j = 0, 1) such that
for any b1, . . . , bn ∈ {0, 1}, we have H(x1,b1 , . . . , xn,bn) = H(x1,0, . . . , xn,0), and xi,0 ̸= xi,1
for i = 1, . . . , n.

Q.2 Let H ′ be another hash function which hashes onto d′ bits. We consider the combined
hash function

H(x) = H(x)∥H ′(x)

(I.e. the concatenation of the two hash functions H and H ′.) As an example, we may

consider d = d′ = 128. Prove that, with complexity 2
d
2 + 2

d′
2 multiplied by something

small, we can find two different messages x and y of same length multiple of ℓ, such that
H(x) = H(y).

Q.3 Does concatenating hash functions significantly increase security, in terms of collision-
resistance? (We expect a detailed answer. In particular, discuss the d = d′ = 128 case.)

2 Discrete Logarithm in Z∗
n2

Let n be an arbitrary positive integer and g = 1 + n.

Q.1 In Z∗
n2 , prove that g has order n.

Q.2 Prove that the discrete logarithm problem is easy in ⟨g⟩.
Q.3 Assume that n is prime. Given an algorithm A solving the discrete logarithm in Z∗

n,
construct an algorithm to solve the discrete logarithm in Z∗

n2 .



3 A Post-Quantum Cryptosystem

We consider a ring R with a norm ∥ · ∥. For any x ∈ R, ∥x∥ is a non-negative real number. It
is such that ∥x∥ = 0 ⇐⇒ x = 0, ∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∥x× y∥ ≤ ∥x∥.∥y∥, and ∥− 1∥ = 1. We
further assume that there are values ℓ, τ , and a function encode from {0, 1}ℓ to R such that

∥encode(pt)− encode(pt′)∥ ≤ τ =⇒ pt = pt′ (1)

We assume that encode is easy to implement. We further assume that ring operations + and
× are easy to implement, as well as ∥ · ∥. We let ε > 0 be fixed. We define

– Gen → (pk, sk):
Pick A ∈ R at random. Pick sk, d ∈ R at random such that ∥sk∥ ≤ ε, ∥d∥ ≤ ε. Set
B = A× sk+ d and pk = (A,B).

– Enc(pk, pt) → ct:
Parse pk = (A,B). Pick t, e, f ∈ R at random such that ∥t∥ ≤ ε, ∥e∥ ≤ ε, ∥f∥ ≤ ε. Set
U = t×A+ e, V = t×B + f + encode(pt), and ct = (U, V ).

Q.1 Prove that for any x ∈ R, if there exists pt such that ∥x − encode(pt)∥ ≤ τ
2 , then pt is

unique with this property.
In what follow, we define decode(x) as either pt such that ∥x−encode(pt)∥ ≤ τ

2 if it exists,
or ⊥ otherwise. We further assume that decode is easy to implement.

Q.2 Prove that if ε ≤ τ/2
1+

√
τ
, we can define an algorithm Dec(sk, ct) → pt making a correct

cryptosystem.
Q.3 We assume that there are z1, . . . , zn ∈ R, with n ≥ ℓ, such that for any integers λ1, . . . , λn,

we have ∥λ1z1 + · · · + λnzn∥ = max1≤i≤n ∥λizi∥. We assume that there is a constant
integer K > τ such that ∥Kzi∥ = K for all i. Given pt = (pt1, . . . , ptℓ) with pti ∈ {0, 1},
i = 1, . . . , ℓ, we define encode(pt) = pt1Kz1 + . . .+ ptℓKzℓ.
Prove that the hypothesis (1) on encode is satisfied.

4 Discrete Log -Based Signature with Domain Parameter

This exercise is about a software vulnerability in Windows 10 which was released last week.
It was rated with important severity. It seems to apply to all Windows versions from the last
20 years.

We consider ECDSA, or any digital signature scheme based on the discrete logarithm
problem which operate in a (multiplicatively denoted) group generated by some g element
and such that pk = gsk. We let Gen, Sign, and Verify be the components of the signature
scheme. We assume they have the following form:

– Gen(g) → (pk, sk): pick a random sk then compute pk = gsk.
– Sign(sk, g,m) → σ: [for information only; the exercise can be solved without this algorithm]

pick a random k, compute r = f(gk), s = H(m)+r·sk
k , σ = (r, s).

– Verify(pk, g,m, σ) → 0/1. [for information only; the exercise can be solved without this

algorithm] make a few verifications plus f
(
g

H(m)
s pk

r
s

)
= r.

[The rest of the specification is not useful for the exercise.] The correctness property says that
for any generator g of the group and any sk and m, if pk = gsk and Sign(sk, g,m) → σ, then
Verify(pk, g,m, σ) → 1.

2



In CryptoAPI (Crypt32.dll) in Windows 10, remote code validation needs a chain of
certificates chain(C1, . . . , Cn) to validate a software s. We model a certificate Ci by Ci =
(mi, σi), i = 1, . . . , n. We say that chain is valid for s if we have the following properties:

– m1 = s;
– for i = 2, . . . , n, we parse mi = (infoi, gi, pki) where gi is a generator of the group ⟨g⟩;
– for i = 1, . . . , n− 1, σi is a valid signature of mi when verified with gi+1 and pki+1;
– pkn is equal to the hard-coded root public key in CryptoAPI (it is the root public key).

Q.1 What is weird/unusual in the definition of chain?
Q.2 We consider an adversary who knows g and the root public key pk. Given an arbitrary

software s, prove that the adversary can easily construct a valid chain with n = 2 for s.

3


