Cryptography and Security - Final Exam

Serge Vaudenay

24.1.2020

- duration: 3h
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

1 On Combining Two Hash Functions by Concatenation

In what follows, C is a compression function mapping a d-bit chaining value h and a ℓ-bit message block x to a d-bit value $C(h, x)$. Given the ℓ-bit blocks x_{1}, \ldots, x_{n}, we define

$$
H\left(x_{1}, \ldots, x_{n}\right)=C\left(\ldots C\left(C\left(0^{d}, x_{1}\right), x_{2}\right) \ldots, x_{n}\right)
$$

where 0^{d} is the bitstring of d bits with all bits set to 0 .
Q. 1 We assume that there is an algorithm $\mathcal{A}(h) \rightarrow\left(x, x^{\prime}\right)$ which, from h, produces a random pair of different ℓ-bit blocks x and x^{\prime} such that $C(h, x)=C\left(h, x^{\prime}\right)$. We let T be the complexity of running the algorithm \mathcal{A}.
For $n \leq d$, construct an algorithm, of complexity T multiplied by something small (i.e. less than $P(d)$ for some polynomial P), which returns $x_{i, j}(i=1, \ldots, n, j=0,1)$ such that for any $b_{1}, \ldots, b_{n} \in\{0,1\}$, we have $H\left(x_{1, b_{1}}, \ldots, x_{n, b_{n}}\right)=H\left(x_{1,0}, \ldots, x_{n, 0}\right)$, and $x_{i, 0} \neq x_{i, 1}$ for $i=1, \ldots, n$.
Q. 2 Let H^{\prime} be another hash function which hashes onto d^{\prime} bits. We consider the combined hash function

$$
\mathcal{H}(x)=H(x) \| H^{\prime}(x)
$$

(I.e. the concatenation of the two hash functions H and H^{\prime}.) As an example, we may consider $d=d^{\prime}=128$. Prove that, with complexity $2^{\frac{d}{2}}+2^{\frac{d^{\prime}}{2}}$ multiplied by something small, we can find two different messages x and y of same length multiple of ℓ, such that $\mathcal{H}(x)=\mathcal{H}(y)$.
Q. 3 Does concatenating hash functions significantly increase security, in terms of collisionresistance? (We expect a detailed answer. In particular, discuss the $d=d^{\prime}=128$ case.)

2 Discrete Logarithm in $\mathrm{Z}_{n^{2}}^{*}$

Let n be an arbitrary positive integer and $g=1+n$.
Q. 1 In $\mathbf{Z}_{n^{2}}^{*}$, prove that g has order n.
Q. 2 Prove that the discrete logarithm problem is easy in $\langle g\rangle$.
Q. 3 Assume that n is prime. Given an algorithm \mathcal{A} solving the discrete logarithm in \mathbf{Z}_{n}^{*}, construct an algorithm to solve the discrete logarithm in $\mathbf{Z}_{n^{2}}^{*}$.

3 A Post-Quantum Cryptosystem

We consider a ring R with a norm $\|\cdot\|$. For any $x \in R,\|x\|$ is a non-negative real number. It is such that $\|x\|=0 \Longleftrightarrow x=0,\|x+y\| \leq\|x\|+\|y\|,\|x \times y\| \leq\|x\| \cdot\|y\|$, and $\|-1\|=1$. We further assume that there are values ℓ, τ, and a function encode from $\{0,1\}^{\ell}$ to R such that

$$
\begin{equation*}
\| \text { encode }(\mathrm{pt})-\operatorname{encode}\left(\mathrm{pt}^{\prime}\right) \| \leq \tau \Longrightarrow \mathrm{pt}=\mathrm{pt}^{\prime} \tag{1}
\end{equation*}
$$

We assume that encode is easy to implement. We further assume that ring operations + and \times are easy to implement, as well as $\|\cdot\|$. We let $\varepsilon>0$ be fixed. We define

- Gen \rightarrow (pk, sk):

Pick $A \in R$ at random. Pick sk, $d \in R$ at random such that $\|$ sk $\|\leq \varepsilon\|, d \| \leq \varepsilon$. Set $B=A \times \mathrm{sk}+d$ and $\mathrm{pk}=(A, B)$.

- Enc(pk, pt) $\rightarrow \mathrm{ct}:$

Parse pk $=(A, B)$. Pick $t, e, f \in R$ at random such that $\|t\| \leq \varepsilon,\|e\| \leq \varepsilon,\|f\| \leq \varepsilon$. Set $U=t \times A+e, V=t \times B+f+\operatorname{encode}(\mathrm{pt})$, and $\mathrm{ct}=(U, V)$.
Q. 1 Prove that for any $x \in R$, if there exists pt such that $\| x$ - encode(pt) $\| \leq \frac{\tau}{2}$, then pt is unique with this property.
In what follow, we define decode (x) as either pt such that $\| x$-encode(pt) $\| \leq \frac{\tau}{2}$ if it exists, or \perp otherwise. We further assume that decode is easy to implement.
Q. 2 Prove that if $\varepsilon \leq \frac{\tau / 2}{1+\sqrt{\tau}}$, we can define an algorithm $\operatorname{Dec}(\mathrm{sk}, \mathrm{ct}) \rightarrow \mathrm{pt}$ making a correct cryptosystem.
Q. 3 We assume that there are $z_{1}, \ldots, z_{n} \in R$, with $n \geq \ell$, such that for any integers $\lambda_{1}, \ldots, \lambda_{n}$, we have $\left\|\lambda_{1} z_{1}+\cdots+\lambda_{n} z_{n}\right\|=\max _{1 \leq i \leq n}\left\|\lambda_{i} z_{i}\right\|$. We assume that there is a constant integer $K>\tau$ such that $\left\|K z_{i}\right\|=K$ for all i. Given $\mathrm{pt}=\left(\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{\ell}\right)$ with $\mathrm{pt}_{i} \in\{0,1\}$, $i=1, \ldots, \ell$, we define encode(pt) $=\mathrm{pt}_{1} K z_{1}+\ldots+\mathrm{pt}_{\ell} K z_{\ell}$. Prove that the hypothesis (1) on encode is satisfied.

4 Discrete Log -Based Signature with Domain Parameter

This exercise is about a software vulnerability in Windows 10 which was released last week. It was rated with important severity. It seems to apply to all Windows versions from the last 20 years.

We consider ECDSA, or any digital signature scheme based on the discrete logarithm problem which operate in a (multiplicatively denoted) group generated by some g element and such that $\mathrm{pk}=g^{\mathrm{sk}}$. We let Gen, Sign, and Verify be the components of the signature scheme. We assume they have the following form:

- $\operatorname{Gen}(g) \rightarrow(\mathrm{pk}, \mathrm{sk}):$ pick a random sk then compute $\mathrm{pk}=g^{\mathrm{sk}}$.
- Sign(sk, $g, m) \rightarrow \sigma$: [for information only; the exercise can be solved without this algorithm] pick a random k, compute $r=f\left(g^{k}\right), s=\frac{H(m)+r \cdot s k}{k}, \sigma=(r, s)$.
- Verify $(\mathrm{pk}, g, m, \sigma) \rightarrow 0 / 1$. [for information only; the exercise can be solved without this algorithm] make a few verifications plus $f\left(g^{\frac{H(m)}{s}} \mathrm{pk}^{\frac{r}{s}}\right)=r$.
[The rest of the specification is not useful for the exercise.] The correctness property says that for any generator g of the group and any sk and m, if $\mathrm{pk}=g^{\text {sk }}$ and $\operatorname{Sign}(\mathrm{sk}, g, m) \rightarrow \sigma$, then $\operatorname{Verify}(\mathrm{pk}, g, m, \sigma) \rightarrow 1$.

In CryptoAPI (Crypt32.dll) in Windows 10, remote code validation needs a chain of certificates chain $\left(C_{1}, \ldots, C_{n}\right)$ to validate a software s. We model a certificate C_{i} by $C_{i}=$ $\left(m_{i}, \sigma_{i}\right), i=1, \ldots, n$. We say that chain is valid for s if we have the following properties:

- $m_{1}=s ;$
- for $i=2, \ldots, n$, we parse $m_{i}=\left(\operatorname{info}_{i}, g_{i}, \mathrm{pk}_{i}\right)$ where g_{i} is a generator of the group $\langle g\rangle$;
- for $i=1, \ldots, n-1, \sigma_{i}$ is a valid signature of m_{i} when verified with g_{i+1} and pk_{i+1};
$-\mathrm{pk}_{n}$ is equal to the hard-coded root public key in CryptoAPI (it is the root public key).
Q. 1 What is weird/unusual in the definition of chain?
Q. 2 We consider an adversary who knows g and the root public key pk. Given an arbitrary software s, prove that the adversary can easily construct a valid chain with $n=2$ for s.

