Cryptography and Security — Final Exam

Serge Vaudenay

24.1.2020

- duration: 3h
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade

1 On Combining Two Hash Functions by Concatenation

In what follows, C is a compression function mapping a d-bit chaining value h and a ℓ -bit message block x to a d-bit value C(h, x). Given the ℓ -bit blocks x_1, \ldots, x_n , we define

$$H(x_1,...,x_n) = C(...C(C(0^d,x_1),x_2)...,x_n)$$

where 0^d is the bitstring of d bits with all bits set to 0.

Q.1 We assume that there is an algorithm $\mathcal{A}(h) \to (x, x')$ which, from h, produces a random pair of different ℓ -bit blocks x and x' such that C(h, x) = C(h, x'). We let T be the complexity of running the algorithm \mathcal{A} .

For $n \leq d$, construct an algorithm, of complexity T multiplied by something small (i.e. less than P(d) for some polynomial P), which returns $x_{i,j}$ (i = 1, ..., n, j = 0, 1) such that for any $b_1, ..., b_n \in \{0, 1\}$, we have $H(x_{1,b_1}, ..., x_{n,b_n}) = H(x_{1,0}, ..., x_{n,0})$, and $x_{i,0} \neq x_{i,1}$ for i = 1, ..., n.

Q.2 Let H' be another hash function which hashes onto d' bits. We consider the combined hash function

$$\mathcal{H}(x) = H(x) \| H'(x)$$

(I.e. the concatenation of the two hash functions H and H'.) As an example, we may consider d = d' = 128. Prove that, with complexity $2^{\frac{d}{2}} + 2^{\frac{d'}{2}}$ multiplied by something small, we can find two different messages x and y of same length multiple of ℓ , such that $\mathcal{H}(x) = \mathcal{H}(y)$.

Q.3 Does concatenating hash functions significantly increase security, in terms of collision-resistance? (We expect a detailed answer. In particular, discuss the d = d' = 128 case.)

2 Discrete Logarithm in $Z_{n^2}^*$

Let n be an arbitrary positive integer and g = 1 + n.

- **Q.1** In $\mathbf{Z}_{n^2}^*$, prove that g has order n.
- **Q.2** Prove that the discrete logarithm problem is easy in $\langle g \rangle$.
- **Q.3** Assume that *n* is prime. Given an algorithm \mathcal{A} solving the discrete logarithm in \mathbf{Z}_n^* , construct an algorithm to solve the discrete logarithm in $\mathbf{Z}_{n^2}^*$.

A Post-Quantum Cryptosystem 3

We consider a ring R with a norm $\|\cdot\|$. For any $x \in R$, $\|x\|$ is a non-negative real number. It is such that $||x|| = 0 \iff x = 0$, $||x + y|| \le ||x|| + ||y||$, $||x \times y|| \le ||x|| \cdot ||y||$, and ||-1|| = 1. We further assume that there are values ℓ , τ , and a function encode from $\{0,1\}^{\ell}$ to R such that

$$\|\mathsf{encode}(\mathsf{pt}) - \mathsf{encode}(\mathsf{pt}')\| \le \tau \Longrightarrow \mathsf{pt} = \mathsf{pt}' \tag{1}$$

We assume that encode is easy to implement. We further assume that ring operations + and \times are easy to implement, as well as $\|\cdot\|$. We let $\varepsilon > 0$ be fixed. We define

- Gen \rightarrow (pk, sk): Pick $A \in R$ at random. Pick $\mathsf{sk}, d \in R$ at random such that $\|\mathsf{sk}\| \leq \varepsilon, \|d\| \leq \varepsilon$. Set $B = A \times \mathsf{sk} + d$ and $\mathsf{pk} = (A, B)$.
- Enc(pk, pt) \rightarrow ct: Parse $\mathsf{pk} = (A, B)$. Pick $t, e, f \in R$ at random such that $||t|| \leq \varepsilon$, $||e|| \leq \varepsilon$, $||f|| \leq \varepsilon$. Set $U = t \times A + e, V = t \times B + f + encode(pt), and ct = (U, V).$
- **Q.1** Prove that for any $x \in R$, if there exists pt such that $||x \text{encode}(pt)|| \leq \frac{\tau}{2}$, then pt is unique with this property. In what follow, we define decode(x) as either pt such that $||x - \text{encode}(pt)|| \le \frac{\tau}{2}$ if it exists, or \perp otherwise. We further assume that decode is easy to implement.
- **Q.2** Prove that if $\varepsilon \leq \frac{\tau/2}{1+\sqrt{\tau}}$, we can define an algorithm $Dec(sk, ct) \to pt$ making a correct cryptosystem.
- **Q.3** We assume that there are $z_1, \ldots, z_n \in R$, with $n \ge \ell$, such that for any integers $\lambda_1, \ldots, \lambda_n$, we have $\|\lambda_1 z_1 + \cdots + \lambda_n z_n\| = \max_{1 \le i \le n} \|\lambda_i z_i\|$. We assume that there is a constant integer $K > \tau$ such that $||Kz_i|| = K$ for all *i*. Given $\mathsf{pt} = (\mathsf{pt}_1, \dots, \mathsf{pt}_\ell)$ with $\mathsf{pt}_i \in \{0, 1\}$, $i = 1, \ldots, \ell$, we define $\mathsf{encode}(\mathsf{pt}) = \mathsf{pt}_1 K z_1 + \ldots + \mathsf{pt}_\ell K z_\ell$. Prove that the hypothesis (1) on encode is satisfied.

Discrete Log -Based Signature with Domain Parameter 4

This exercise is about a software vulnerability in Windows 10 which was released last week. It was rated with *important* severity. It seems to apply to all Windows versions from the last 20 years.

We consider ECDSA, or any digital signature scheme based on the discrete logarithm problem which operate in a (multiplicatively denoted) group generated by some q element and such that $pk = g^{sk}$. We let Gen, Sign, and Verify be the components of the signature scheme. We assume they have the following form:

- $\operatorname{Gen}(g) \to (\operatorname{pk}, \operatorname{sk})$: pick a random sk then compute $\operatorname{pk} = g^{\operatorname{sk}}$.
- Sign(sk, g, m) $\rightarrow \sigma$: [for information only; the exercise can be solved without this algorithm] pick a random k, compute $r = f(g^k)$, $s = \frac{H(m) + r \cdot sk}{k}$, $\sigma = (r, s)$. - Verify(pk, g, m, σ) $\rightarrow 0/1$. [for information only; the exercise can be solved without this
- algorithm] make a few verifications plus $f\left(g^{\frac{H(m)}{s}}\mathsf{pk}^{\frac{r}{s}}\right) = r.$

[The rest of the specification is not useful for the exercise.] The correctness property says that for any generator g of the group and any sk and m, if $\mathsf{pk} = g^{\mathsf{sk}}$ and $\mathsf{Sign}(\mathsf{sk}, g, m) \to \sigma$, then Verify $(\mathsf{pk}, g, m, \sigma) \to 1$.

In CryptoAPI (Crypt32.dll) in Windows 10, remote code validation needs a chain of certificates chain (C_1, \ldots, C_n) to validate a software s. We model a certificate C_i by $C_i = (m_i, \sigma_i), i = 1, \ldots, n$. We say that chain is valid for s if we have the following properties:

$$-m_1 = s;$$

- for i = 2, ..., n, we parse $m_i = (info_i, g_i, pk_i)$ where g_i is a generator of the group $\langle g \rangle$;
- for i = 1, ..., n 1, σ_i is a valid signature of m_i when verified with g_{i+1} and pk_{i+1} ;
- pk_n is equal to the hard-coded root public key in CryptoAPI (it is the root public key).
- Q.1 What is weird/unusual in the definition of chain?
- **Q.2** We consider an adversary who knows g and the root public key pk. Given an arbitrary software s, prove that the adversary can easily construct a valid chain with n = 2 for s.