
Cryptography and Security — Final Exam

Solution

Serge Vaudenay

24.1.2020

– duration: 3h
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 On Combining Two Hash Functions by Concatenation

The following exercise is inspired from Multicollisions in Iterated Hash Functions.
Application to Cascaded Constructions by Joux, published in the proceedings of
CRYPTO 2004 (2019 test-of-time award winner).

In what follows, C is a compression function mapping a d-bit chaining value h and a ℓ-bit
message block x to a d-bit value C(h, x). Given the ℓ-bit blocks x1, . . . , xn, we define

H(x1, . . . , xn) = C(. . . C(C(0d, x1), x2) . . . , xn)

where 0d is the bitstring of d bits with all bits set to 0.

Q.1 We assume that there is an algorithm A(h) → (x, x′) which, from h, produces a random
pair of different ℓ-bit blocks x and x′ such that C(h, x) = C(h, x′). We let T be the
complexity of running the algorithm A.
For n ≤ d, construct an algorithm, of complexity T multiplied by something small (i.e.
less than P (d) for some polynomial P), which returns xi,j (i = 1, . . . , n, j = 0, 1) such that
for any b1, . . . , bn ∈ {0, 1}, we have H(x1,b1 , . . . , xn,bn) = H(x1,0, . . . , xn,0), and xi,0 ̸= xi,1
for i = 1, . . . , n.

We simply run

1: h← 0d

2: for i = 1 to n do
3: (xi,0, xi,1)← A(h)
4: h← C(h, xi,0)
5: end for

The complexity is essentially Tn plus the management of registers, which is small.

Q.2 Let H ′ be another hash function which hashes onto d′ bits. We consider the combined
hash function

H(x) = H(x)∥H ′(x)

(I.e. the concatenation of the two hash functions H and H ′.) As an example, we may

consider d = d′ = 128. Prove that, with complexity 2
d
2 + 2

d′
2 multiplied by something

small, we can find two different messages x and y of same length multiple of ℓ, such that
H(x) = H(y).

We set n = d′

2 . We construct A to find a collision on C(h, .) by using the birthday

paradox with complexity T ∼ 2
d
2 .

We apply the previous question to obtain a way to construct 2n messages of same

hash by H. We hash all those 2n = 2
d′
2 messages with H ′. Thanks to the birth-

day paradox, we are likely to obtain a collision on H ′. This collision was already a
collision for H. Hence, it is a collision for H.
The complexity is essentially n2

d
2 + 2

d′
2 . With d = d′ = 128, this is 270 which is

doable.

Q.3 Does concatenating hash functions significantly increase security, in terms of collision-
resistance? (We expect a detailed answer. In particular, discuss the d = d′ = 128 case.)

It does not increase security as expected when one of the two hash functions is of
Merkle-Damg̊ard type. We would intuitively expect that the complexity of collision

search is 2
d+d′

2 = 2
d
2 × 2

d′
2 , but it is 2

d
2 + 2

d′
2 .

In the previous question with d = d′ = 128, we would aim for the best attack to be
of complexity 2128, but we have an attack of complexity 270.

2

2 Discrete Logarithm in Z∗
n2

Let n be an arbitrary positive integer and g = 1 + n.

Q.1 In Z∗
n2 , prove that g has order n.

Since 1 = (1 + n)(1− n) + n2, 1− n is the inverse of 1 + n. So, g belongs to Z∗
n2.

We have

gx = (1 + n)x =
x∑

i=0

(x
i

)
ni ≡ 1 + xn (mod n2)

Hence, gx ≡ 1 is equivalent to xn mod n2 = 0, which is equivalent to x mod n = 0.
Therefore, n is the smallest positive power of g equal to 1.

Q.2 Prove that the discrete logarithm problem is easy in ⟨g⟩.

We have already seen that gx ≡ 1 + xn. Hence, the discrete logarithm of y ≡ gx is

x =
(y mod n2)− 1

n

which is easy to compute.

Q.3 Assume that n is prime. Given an algorithm A solving the discrete logarithm in Z∗
n,

construct an algorithm to solve the discrete logarithm in Z∗
n2 .

Having an algorithm A solving the discrete logarithm in Z∗
n means that there exists

some h such that given input y mod n, A(y mod n) returns x such that y ≡ hx

(mod n) when the output is correct. We prove below a more general result: given

y ∈ Z∗
n2 and x ∈ Z, if h = y

1
x
mod (n−1) mod n, we can compute x′′ such that

y = hx
′′
mod n2 if hn−1 mod n2 > 1, or such that y = (gh)x

′′
mod n2 otherwise.

Given y ∈ Z∗
n2 and x ∈ Z, we let h = y

1
x
mod (n−1) mod n and consider h as an

element of Z∗
n2. (Since h is coprime with n, it is coprime with n2 too.) We have

y ≡ hx (mod n). We have the discrete logarithm of y in basis h in Z∗
n. We want to

compute the discrete logarithm of y in basis h in Z∗
n2, when h is a generator.

First of all, let us consider the order of h. We have hn−1 mod n = 1 so, hn−1 mod
n2 = 1 + h′n for some h′ ∈ Zn. Hence, we have hn−1 ≡ gh

′
(mod n2). If h′ = 0, we

are in the hn−1 ≡ 1 (mod n2) case. If h′ > 0, we observe that h′ is invertible modulo
n.
We let z = yh−x mod n2. We have z mod n = 1. Hence, z = 1 + x′n for some
x′ ∈ Zn. We have gx

′ ≡ z (mod n2). We deduce y ≡ gx
′
hx (mod n2).

If h′ is invertible modulo n, let h′′ ∈ Zn such that h′h′′ mod n = 1. We have
hx

′h′′(n−1) ≡ gx
′h′h′′ ≡ gx

′
(mod n2). Hence, y ≡ hx+x′h′′(n−1) (mod n2) which gives

the discrete logarithm of y in basis h.
If h′ = 0, we have hn−1 ≡ 1 (mod n2). We use the Chinese Remainder Theorem
with the coprime n and n − 1 to find x′′ ∈ Zn(n−1) such that x′′ mod n = x′ and

x′′ mod (n − 1) = x. We have gx
′′ ≡ gx

′
and hx

′′ ≡ hx. Hence, (gh)x
′′ ≡ y, which

gives the discrete logarithm of y in basis gh.

3

3 A Post-Quantum Cryptosystem

We consider a ring R with a norm ∥ · ∥. For any x ∈ R, ∥x∥ is a non-negative real number. It
is such that ∥x∥ = 0⇐⇒ x = 0, ∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∥x× y∥ ≤ ∥x∥.∥y∥, and ∥− 1∥ = 1. We
further assume that there are values ℓ, τ , and a function encode from {0, 1}ℓ to R such that

∥encode(pt)− encode(pt′)∥ ≤ τ =⇒ pt = pt′ (1)

We assume that encode is easy to implement. We further assume that ring operations + and
× are easy to implement, as well as ∥ · ∥. We let ε > 0 be fixed. We define

– Gen→ (pk, sk):
Pick A ∈ R at random. Pick sk, d ∈ R at random such that ∥sk∥ ≤ ε, ∥d∥ ≤ ε. Set
B = A× sk+ d and pk = (A,B).

– Enc(pk, pt)→ ct:
Parse pk = (A,B). Pick t, e, f ∈ R at random such that ∥t∥ ≤ ε, ∥e∥ ≤ ε, ∥f∥ ≤ ε. Set
U = t×A+ e, V = t×B + f + encode(pt), and ct = (U, V).

Q.1 Prove that for any x ∈ R, if there exists pt such that ∥x − encode(pt)∥ ≤ τ
2 , then pt is

unique with this property.
In what follow, we define decode(x) as either pt such that ∥x−encode(pt)∥ ≤ τ

2 if it exists,
or ⊥ otherwise. We further assume that decode is easy to implement.

Let pt and pt′ be such that ∥x − encode(pt)∥ ≤ τ
2 and ∥x − encode(pt′)∥ ≤ τ

2 . We
have

∥encode(pt)− encode(pt′)∥ ≤ ∥encode(pt)− x∥+ ∥x− encode(pt′)∥
≤ ∥x− encode(pt)∥+ ∥x− encode(pt′)∥
≤ τ

so pt = pt′. We used ∥x + y∥ ≤ ∥x∥ + ∥y∥, ∥ − x∥ ≤ ∥ − 1∥.∥x∥ = ∥x∥, and the
property of encode.

Q.2 Prove that if ε ≤ τ/2
1+

√
τ
, we can define an algorithm Dec(sk, ct) → pt making a correct

cryptosystem.

If ct is the result of Enc(pk, pt) and (pk, sk) if the result of Gen, then

V − U × sk = t× d+ f − e× sk+ encode(pt)

We have ∥t × d + f − e × sk∥ ≤ 2ε2 + ε thanks to the properties of the norm. For

ε ≤ τ/2
1+

√
τ
, we have 2ε2 + ε ≤ τ2/2+τ/2(1+

√
τ)

(1+
√
τ)2

. This is less than τ/2 if and only if

τ + (1 +
√
τ) ≤ (1 +

√
τ)2 which is true. Hence, we have

∥V − U × sk− encode(pt)∥ ≤ τ

2

Due to the previous question, we have

decode(V − U × sk) = pt

The algorithm Dec(sk, ct)→ pt thus consists of computing decode(V − U × sk).

4

Q.3 We assume that there are z1, . . . , zn ∈ R, with n ≥ ℓ, such that for any integers λ1, . . . , λn,
we have ∥λ1z1 + · · · + λnzn∥ = max1≤i≤n ∥λizi∥. We assume that there is a constant
integer K > τ such that ∥Kzi∥ = K for all i. Given pt = (pt1, . . . , ptℓ) with pti ∈ {0, 1},
i = 1, . . . , ℓ, we define encode(pt) = pt1Kz1 + . . .+ ptℓKzℓ.
Prove that the hypothesis (1) on encode is satisfied.

We take pt and pt′ and we have

∥encode(pt)− encode(pt′)∥ =
∥∥(pt1 − pt′1)Kz1 + . . .+ (ptℓ − pt′ℓ)Kzℓ

∥∥
= max

i
∥(pti − pt′i)Kzi∥

Since ∥ − 1∥ = 1, we know that ∥ − x∥ ≤ ∥ − 1∥.∥x∥ = ∥x∥ and similarly, ∥x∥ =
∥(−1) × (−x)∥ ≤ ∥ − x∥, hence ∥ − x∥ = ∥x∥ for all x. We have ∥Kzi∥ = K thus
∥ −Kzi∥ = K as well. Since pti − pt′i ∈ {−1, 0, 1}, we have

∥encode(pt)− encode(pt′)∥ = Kmax
i
|pti − pt′i| = K.1pt ̸=pt′

Since K > τ , ∥encode(pt)− encode(pt′)∥ ≤ τ implies pt = pt′.

5

4 Discrete Log -Based Signature with Domain Parameter

This exercise is about a software vulnerability in Windows 10 which was released last week.
It was rated with important severity. It seems to apply to all Windows versions from the last
20 years.

The following exercise is inspired from Digital Signature Schemes with Domain
Parameters by Vaudenay, published in the proceedings of ACISP 2004.

We consider ECDSA, or any digital signature scheme based on the discrete logarithm
problem which operate in a (multiplicatively denoted) group generated by some g element
and such that pk = gsk. We let Gen, Sign, and Verify be the components of the signature
scheme. We assume they have the following form:

– Gen(g)→ (pk, sk): pick a random sk then compute pk = gsk.
– Sign(sk, g,m)→ σ: [for information only; the exercise can be solved without this algorithm]

pick a random k, compute r = f(gk), s = H(m)+r·sk
k , σ = (r, s).

– Verify(pk, g,m, σ) → 0/1. [for information only; the exercise can be solved without this

algorithm] make a few verifications plus f
(
g

H(m)
s pk

r
s

)
= r.

[The rest of the specification is not useful for the exercise.] The correctness property says that
for any generator g of the group and any sk and m, if pk = gsk and Sign(sk, g,m) → σ, then
Verify(pk, g,m, σ)→ 1.

In CryptoAPI (Crypt32.dll) in Windows 10, remote code validation needs a chain of
certificates chain(C1, . . . , Cn) to validate a software s. We model a certificate Ci by Ci =
(mi, σi), i = 1, . . . , n. We say that chain is valid for s if we have the following properties:

– m1 = s;
– for i = 2, . . . , n, we parse mi = (infoi, gi, pki) where gi is a generator of the group ⟨g⟩;
– for i = 1, . . . , n− 1, σi is a valid signature of mi when verified with gi+1 and pki+1;
– pkn is equal to the hard-coded root public key in CryptoAPI (it is the root public key).

Q.1 What is weird/unusual in the definition of chain?

The generator gi seems to be changeable out from the common domain parameters.
The last pkn is checked to be the root pubic key, but there is no verifiation about gn.

Q.2 We consider an adversary who knows g and the root public key pk. Given an arbitrary
software s, prove that the adversary can easily construct a valid chain with n = 2 for s.

We set n = 2, g2 = pk2 = pk, and we use sk = 2 to compute σ1 ← Sign(sk2, g2, s)
and. σ2 ← Sign(sk2, g2,m2).
We do have pk2 = gsk22 . Hence, due to the correctness property, σ1 and σ2 are valid
signatures.
Since we have pk2 = pk, the chain is valid.

6

