Cryptography and Security — Midterm Exam

Serge Vaudenay

27.11.2019

- duration: 1h45
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will <u>**not**</u> answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil

1 GF(256) Computations

AES used $GF(2^8)$ represented by polynomials reduced modulo $x^8 + x^4 + x^3 + x + 1$ in $\mathbb{Z}_2[x]$. The InvMixColumns step of the AES decryption algorithm multiplies

$$M^{-1} = \begin{pmatrix} 0x0e \ 0x0b \ 0x0d \ 0x09 \\ 0x09 \ 0x0e \ 0x0b \ 0x0b \ 0x0d \\ 0x0d \ 0x09 \ 0x0e \ 0x0b \\ 0x0b \ 0x0d \ 0x09 \ 0x0e \end{pmatrix}$$

by a 4-dimensional vector with coordinates in $GF(2^8)$.

- Q.1 What are the polynomials represented by the bytes 0x0e, 0x0b, 0x0d, and 0x09?
- Q.2 Multiply the vector (0x0e, 0x0b, 0x0d, 0x09) by the GF(2⁸) element 0x02. (Response must be hexadecimal.)
- **Q.3** Apply InvMixColumns on the column $(0x01, 0x02, 0x10, 0x40)^t$. (Response must be hexadecimal.)

2 DH in an RSA Group

A strong prime is an odd prime number p such that $\frac{p-1}{2}$ is also a prime number. A strong RSA modulus is a number n = pq which is the product of two different strong primes p and q. In this exercise, we consider such a strong RSA modulus and we denote p = 2p' + 1, q = 2q' + 1, and n' = p'q'.

- **Q.1** Prove that there exists an element $g \in \mathbf{Z}_n^*$ of order n'.
- **Q.2** How to check group membership in the subgroup $\langle g \rangle$ of \mathbb{Z}_n^* ?
- **Q.3** If n and n' are known, show that we can easily compute p and q.
- **Q.4** We consider a Diffie-Hellman protocol in the subgroup $\langle g \rangle$ of Z_n^* . Prove that if the factorization of *n* must be kept secret, there is a big problem to implement the protocol.
- **Q.5** Prove that the subgroup of \mathbf{Z}_n^* of all x such that (x/n) = +1 is cyclic and of order 2n'.
- **Q.6** Propose a meaningful Diffie-Hellman protocol in a cyclic subgroup of \mathbf{Z}_n^* which keeps the factorization of n secret. (Carefuly check all what we need to add in the regular Diffie-Hellman protocol for security reasons.)

3 Attribute-Based Encryption

Let G_1 and G_2 be two groups with multiplicative notations and let $e: G_1 \times G_1 \to G_2$ be a nondegenerate bilinear map. We assume that G_1 is cyclic, of prime order p, and generated by some element g. We consider two parameters n and d with $d \leq n$. The tuple $pp = (G_1, G_2, p, g, n, d)$ is a vector of public parameters. We consider the following algorithms:

Genmaster(pp):

1: parse $pp = (G_1, G_2, p, g, n, d)$ 2: pick $t_1, \ldots, t_n, y \in \mathbf{Z}_p$ at random 3: $T_1 \leftarrow g^{t_1}, ..., T_n \leftarrow g^{t_n}, Y \leftarrow e(g,g)^y = e(g^y,g)$ 4: $\mathsf{pk} \leftarrow (T_1, \ldots, T_n, Y)$ 5: $\mathsf{mk} \leftarrow (t_1, \ldots, t_n, y)$ 6: return (pk, mk) $\triangleright A \subseteq \{1, \ldots, n\}$ Gen(pp, mk, A): 7: parse $pp = (G_1, G_2, p, g, n, d)$ 8: pick a random polynomial $q(x) \in \mathbf{Z}_p[x]$ of degree d-1 such that q(0) = y9: for each $i \in A$, $D_i \leftarrow g^{\frac{q(i)}{t_i}}$ 10: $\mathsf{sk} \leftarrow (D_i)_{i \in A}$ 11: return sk $\triangleright m \in G_2, B \subseteq \{1, \ldots, n\}$ Enc(pp, pk, m, B): 12: parse $pp = (G_1, G_2, p, g, n, d)$ 13: pick $s \in \mathbf{Z}_p$ at random 14: $E \leftarrow mY^s$ 15: for each $i \in B, E_i \leftarrow T_i^s$ 16: $\mathsf{ct} \leftarrow (B, E, (E_i)_{i \in B})$ 17: return ct

In our system, Genmaster returns a public key pk (given to anyone with pp) and a master secret mk for a trusted dealer. Each user U has a set of attributes A_U and the trusted dealer gives him a secret sk_U which is generated by $Gen(pp, mk, A_U)$. Anyone can encrypt a message m with some set of attributes B.

- **Q.1** Express ct in terms of pp, mk, m, and s.
- Q.2 Show how to decrypt ct given pp and pk by assuming that the discrete logarithm problem is easy. (Assume B non empty.)
- **Q.3** Show that if $A \cap B$ has cardinality at least d, then we can easily decrypt ct given pp and sk. (I.e., we do not need to compute a discrete logarithm.)