Cryptography and Security - Midterm Exam

Serge Vaudenay

27.11.2019

- duration: 1h45
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil

1 GF(256) Computations

AES used $\operatorname{GF}\left(2^{8}\right)$ represented by polynomials reduced modulo $x^{8}+x^{4}+x^{3}+x+1$ in $\mathbf{Z}_{2}[x]$. The InvMixColumns step of the AES decryption algorithm multiplies
by a 4 -dimensional vector with coordinates in $\operatorname{GF}\left(2^{8}\right)$.
Q. 1 What are the polynomials represented by the bytes $0 \times 0 \mathrm{e}, 0 \mathrm{x} 0 \mathrm{~b}, 0 \mathrm{x} 0 \mathrm{~d}$, and 0×09 ?
Q. 2 Multiply the vector ($0 \mathrm{x} 0 \mathrm{e}, 0 \mathrm{x} 0 \mathrm{~b}, 0 \mathrm{x} 0 \mathrm{~d}, 0 \mathrm{x} 09$) by the $\mathrm{GF}\left(2^{8}\right)$ element 0×02. (Response must be hexadecimal.)
Q. 3 Apply InvMixColumns on the column ($0 \times 01,0 \times 02,0 \times 10,0 \times 40)^{t}$. (Response must be hexadecimal.)

2 DH in an RSA Group

A strong prime is an odd prime number p such that $\frac{p-1}{2}$ is also a prime number. A strong RSA modulus is a number $n=p q$ which is the product of two different strong primes p and q. In this exercise, we consider such a strong RSA modulus and we denote $p=2 p^{\prime}+1, q=2 q^{\prime}+1$, and $n^{\prime}=p^{\prime} q^{\prime}$.
Q. 1 Prove that there exists an element $g \in \mathbf{Z}_{n}^{*}$ of order n^{\prime}.
Q. 2 How to check group membership in the subgroup $\langle g\rangle$ of \mathbf{Z}_{n}^{*} ?
Q. 3 If n and n^{\prime} are known, show that we can easily compute p and q.
Q. 4 We consider a Diffie-Hellman protocol in the subgroup $\langle g\rangle$ of Z_{n}^{*}. Prove that if the factorization of n must be kept secret, there is a big problem to implement the protocol.
Q. 5 Prove that the subgroup of \mathbf{Z}_{n}^{*} of all x such that $(x / n)=+1$ is cyclic and of order $2 n^{\prime}$.
Q. 6 Propose a meaningful Diffie-Hellman protocol in a cyclic subgroup of \mathbf{Z}_{n}^{*} which keeps the factorization of n secret. (Carefuly check all what we need to add in the regular DiffieHellman protocol for security reasons.)

3 Attribute-Based Encryption

Let G_{1} and G_{2} be two groups with multiplicative notations and let e: $G_{1} \times G_{1} \rightarrow G_{2}$ be a nondegenerate bilinear map. We assume that G_{1} is cyclic, of prime order p, and generated by some element g. We consider two parameters n and d with $d \leq n$. The tuple $\mathrm{pp}=\left(G_{1}, G_{2}, p, g, n, d\right)$ is a vector of public parameters. We consider the following algorithms:

```
Genmaster(pp):
    parse \(\mathrm{pp}=\left(G_{1}, G_{2}, p, g, n, d\right)\)
    pick \(t_{1}, \ldots, t_{n}, y \in \mathbf{Z}_{p}\) at random
    \(T_{1} \leftarrow g^{t_{1}}, \ldots, T_{n} \leftarrow g^{t_{n}}, Y \leftarrow e(g, g)^{y}=e\left(g^{y}, g\right)\)
    \(\mathrm{pk} \leftarrow\left(T_{1}, \ldots, T_{n}, Y\right)\)
    \(\mathrm{mk} \leftarrow\left(t_{1}, \ldots, t_{n}, y\right)\)
    return ( \(\mathrm{pk}, \mathrm{mk}\) )
```

Gen(pp, mk, A): $\quad \triangleright A \subseteq\{1, \ldots, n\}$
7: parse $\mathrm{pp}=\left(G_{1}, G_{2}, p, g, n, d\right)$
8: pick a random polynomial $q(x) \in \mathbf{Z}_{p}[x]$ of degree $d-1$ such that $q(0)=y$
9: for each $i \in A, D_{i} \leftarrow g^{\frac{q(i)}{t_{i}}}$
sk $\leftarrow\left(D_{i}\right)_{i \in A}$
return sk
$\operatorname{Enc}(\mathrm{pp}, \mathrm{pk}, m, B): \quad \triangleright m \in G_{2}, B \subseteq\{1, \ldots, n\}$
12: parse $\mathrm{pp}=\left(G_{1}, G_{2}, p, g, n, d\right)$
pick $s \in \mathbf{Z}_{p}$ at random
$E \leftarrow m Y^{s}$
for each $i \in B, E_{i} \leftarrow T_{i}^{s}$
$\mathrm{ct} \leftarrow\left(B, E,\left(E_{i}\right)_{i \in B}\right)$
return ct

In our system, Genmaster returns a public key pk (given to anyone with pp) and a master secret mk for a trusted dealer. Each user U has a set of attributes A_{U} and the trusted dealer gives him a secret sk_{U} which is generated by $\operatorname{Gen}\left(\mathrm{pp}, \mathrm{mk}, A_{U}\right)$. Anyone can encrypt a message m with some set of attributes B.
Q. 1 Express ct in terms of pp, mk, m, and s.
Q. 2 Show how to decrypt ct given pp and pk by assuming that the discrete logarithm problem is easy. (Assume B non empty.)
Q. 3 Show that if $A \cap B$ has cardinality at least d, then we can easily decrypt ct given pp and sk. (I.e., we do not need to compute a discrete logarithm.)

