
Cryptography and Security — Final Exam

Solution

Serge Vaudenay

28.1.2021

– duration: 3h

– no documents allowed, except one 2-sided sheet of handwritten notes

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Merkle’s Puzzles

The following exercise is inspired from Secure Communications over Insecure Chan-
nels by Merkle, published in the Communication of the ACM of April 1978 (pp. 294–
299).

We define a primitive which we call puzzle with the following algorithms:

– Gen(s, λ, i, k; r) → p is probabilistic and generates a “puzzle” p from some input index i, a
key k, a difficulty s, a parameter λ, and random coins r. We call a unit of time its average
time complexity.

– Solve(s, λ, p) → (i, k) is deterministic and recovers i and k from s, λ, and p. Its time
complexity is upper bounded by 2s units of time.

The correctness notion says

∀s, λ, i, k Pr[Solve(s, λ,Gen(s, λ, i, k)) → (i, k)] ≥ 1− 2−λ

The security notion intuitively says that any solving algorithm requires at least an average
complexity of 1

22
s units of time.

Let Enc be a symmetric encryption scheme over the space of (i, k, z) tuples (where z is
a bitstring of length s + λ) with a key of length at least s. We assume that encryption and
decryption take approximately the same amount of time. Given s random coins r, we define
Gen(s, λ, i, k; r) = Encr∥0∗(i, k, 0

s+λ), where r∥0∗ is r padded with enough zero bits to be a

key of correct length and 0s+λ is a string of s+ λ zero bits.

Q.1 Prove that we can define a puzzle based on Gen (i.e. propose a Solve and verify all condi-
tions of a puzzle).



We define Solve(s, λ, p) as follows:

1: for all r of s bits do
2: Decr∥0∗(p) → x

3: if x parses to (i, k, 0s+λ) for some i and k then
4: return (i, k)
5: end if
6: end for

The number of iterations is upper bounded by 2s, which is also the complexity.
Given s, λ, i, k, the incorrect case corresponds to the existence of r and r′ such
that r ̸= r′ and Decr′∥0∗(Encr∥0∗(i, k, 0

s+λ)) parses to (i′, k′, 0s+λ) for some i′ and

k′. Given r and r′, this parse occurs with probability 2−s−λ, assuming Dec behaves
like random. Since there are 2s − 1 possible r′, it exists with probability bounded by
2−λ. (Ok, this is a non-rigorous proof.)
If the encryption is well done, solving the puzzle intruitively implies finding the right
key r which can only work by exhaustive search. (Ok, this is an even less rigorous
proof.)

Q.2 Let s, λ, and N be three public parameters. Alice generates Gen(s, λ, i, ki; ri) → pi for
i = 1, . . . , N and randomly selected ki and ri. Alice picks a random permutation σ of
{1, . . . , N}, defines p′j = pσ(j), i = 1, . . . , N , and sends p′1, . . . , p

′
N to Bob. Bob picks a

random j, runs Solve(s, λ, p′j) → (i, kB) and sends i back to Alice. Alice sets kA = ki. The
private outputs of Alice and Bob are kA and kB respectively.
Prove that we have a key agreement protocol (i.e. prove correctness). What is the com-
plexity for Alice and Bob?

We have (iB, kB) = Solve(s, λ,Gen(s, λ, σ(j), kσ(j); rσ(j))). Due to the correctness

of the puzzle, with probability at least 1 − 2−λ we have (σ(j), kσ(j)) = (iB, kB) so
kA = kiB = kσ(j) = kB.
The complexity for Alice is roughly of N units. The complexity for Bob is upper
bounded by 2s units.

Q.3 In Q.2, what is the best passive attack Eve could do? (Study its complexity.) As s and N
are based on the security parameter, propose a way to select them coherently.

If Eve solves a random subset of m puzzles from Alice, it costs at least m
2 2

s and the
probability that Bob solves one from these is m

N . Hence, the complexity/probability
ratio is at least N

2 2
s.

It is reasonable to take N = 1
22

s to equate the complexity of Alice and Bob. Hence,
the complexity of both Alice and Bob is N while the complexity/probability of Eve is
N2.
This protocol is not so efficient but it was the very first proposal towards a secure
key agreement protocol.

2



2 Crypto Choices

We want to design a secure communication system in which breaking it would be equivalent,
in terms of complexity, to do an exhaustive search on a 128-bit secret key. In this exercise, we
have to propose concrete cryptographic algorithms with some concrete parameters (such as
the length of various objects). (Proposing can mean to name an existing standard algorithm
instance which could be used with brief justifications.) To get the full grade, we should propose
parameters which are neither too small not too large.

Q.1 Propose a symmetric encryption scheme for data of variable length. Specify the key length.
Which security property is this algorithm supposed to guarantee?

We can suggest AES with 128-bit key. To accommodate variable length input, we
should use it in CTR mode. This is made to protect the confidentiality of communi-
cation.

Q.2 For a message authentication code, what would be the appropriate key length and tag
length? Propose an algorithm with those parameters. Which security property is this
algorithm supposed to guarantee?

The appropriate key length is 128 bits. The appropriate tag length for unforgeability
is also 128 bits. We could use HMAC-SHA256 with a tag truncate to 128 bits and
a key of the same length but this would not be so efficient because SHA256 produce
digests of 256 bits. A better choice would be to use CMAC which is also based on
AES. We can actually combine with the previous question and use AES-CCM or
AES-GCM. A MAC is made to authenticate data and to protect integrity.

Q.3 We want to hash a message to sign its digest. Propose an appropriate hash function.
Which security property is important when used in hash-and-sign?

We can propose SHA256 which makes 256-bit digests. The important property is
collision resistance to make sure that digests are unique.

Q.4 Propose a signature scheme which is appropriate with the proposed hash function.

We can use ECDSA on the P256 curve. It is a curve with close to 2256 points working
over the field of residues modulo a 256-bit prime number.
Alternately, we can use RSA-PSS with a modulus of at least 2048 bits (more would
be recommended, actually).

Q.5 Revisit all questions to offer the same security in a post-quantum era.

For encryption, we switch to AES-CTR with a 256-bit key.
For MAC, we can still use CMAC with 256-bit key. The tag-length (128 bits) is in
theory too small but quantum forgery attacks exploiting a too small tag are harder
than others.
We can use SHA512.
Signature cannot be ECDSA nor RSA. We need a post-quantum signature scheme
(to come) for that.

3



3 ECDSA with Bad Randomness

We recall the ECDSA scheme. A point G in an elliptic curves generates a group of order a
public prime n. The secret key is a residue d modulo n. The public key is a point Q = dG. To
sign a message M , the signer picks a random k ∈ Z∗

n and computes r = xcoord(kG) mod n

and s = H(M)+dr
k mod n, where H is a hash function. The signature is the pair (r, s). The

signature is such that

r = xcoord

(
H(M)

s
G+

r

s
Q

)
We consider a network of signers where the signer of index i has a key pair (di, Qi). Signers

use devices to sign but those devices have a poor random generator. We assume that there
exists a subset of Z∗

n of cardinality v such that the random generator outputs k uniformly in
this subset. We assume that n has 256 bits and that v has 100 bits.

Q.1 Describe a key recovery attack targetting one user. Analyze how many signatures are
needed, the complexity, and the probability of success. Is this attack realistic?

After
√
v signatures are made by the targetted signer, there is a constant probability

of success that there exists two signatures having selected the same k, due to the
birthday paradox. These two signatures are visible by having the same r. Let s1 and
s2 be the two s values. We have ks1 = H(M1) + dr and ks2 = H(M2) + dr modulo
n. This is a system of two linear equations in two unknowns k and d which can be
easily solved to recover the secret key d.
We need

√
v ∼ 250 signatures, a complexity of

√
v ∼ 250, and a constant probability

of success.
The attack is feasible. However, it is not realistic to assume that a single honest user
will sign 250 documents.

Q.2 In a network of N signers, we assume that each signer signs w documents at random. We
assume w ≪

√
v. Given two different signers, what is (approximately) the probability p

that they once used the same k value?

We count pairs of k values between the two users. We have w2 pairs and each pair is
matching, i.e. has twice the same k, with probability 1

v . Hence, the expected number

of matching pairs is w2

v . If we neglect the probability to have several matching pairs,

we obtain p ≈ w2

v .

Q.3 If each signer signs w documents, design an attack which recovers the key of some signers
with good probability when N ∼ vw−2. Apply this to w ∼ 235.
HINT: In a random graph of N vertices in which each possible edge is present with
probability 1

N , there exists a cycle with good probability.

We draw a graph in which each vertex represents a signer and each edge represent
a value k in common between two signers. Each vertex has an unknown d and each
edge has an unknown k. Due to our setting and the previous question, we have a
random graph of N vertices in which each possible edge is present with probability
1
N . Hence, we have a cycle with good probability. A cycle of t length t would contain t
vertices and t edges and define 2t linear equations in 2t unknowns, which is solvable.
This recovers the secret key of t signers.
With w ∼ 235, v ∼ 2100, and N ∼ vw−2 ∼ 230,

4



4 Post-Quantum Bitcoins Wallet

In the bitcoin architecture, a transaction is an ECDSA signature by a holder of a key pair
(pk, sk) on a document which contains

– pk;
– a list p1, . . . , pm of pointers to some transactions in which pi paid xi bitcoins to pk which

have not been spent so far;
– a list (y1, pk1), . . . , (yn, pkn) of public keys to whom to pay the collected bitcoins and of

positive numbers yj such that x1 + · · ·+ xm = y1 + · · ·+ yn.

When a user wants to pay some other users for a total of y1+ · · ·+yn−1, he/she collects some
of his bitcoins x1+ · · ·+xm so that x1+ · · ·+xm ≥ y1+ · · ·+ yn−1, he/she computes yn such
that x1 + · · · + xm = y1 + · · · + yn and if yn > 0, he/she adds (yn, pk) to pay the leftover to
himself.

Q.1 In a quantum era, show that as soon as the transaction is made public, a powerful adver-
sary can steal the y1 + · · ·+ yn bitcoins.

We consider an adversary who is powerful enough to possess a quantum computer.
This adversary can compute the discrete logarithm of every pkj, which appear in
the transaction, by using the Shor algorithm, and obtain the secret keys skj. With
this, the adversary can sign n transactions. The j-th transaction is signed with skj,
the link to the posted transaction, and (yj , pk

′) some some pk′ of his choice. It will
put the y1 + · · ·+ yn bitcoins on account pk′. Then, the adversary should cash those
bitcoins before another adversary steals them.

Q.2 We change the structure of the transaction so that the (yj , pkj) pairs in the list of the
recipients of the transaction are replaced by some (yj ,H(pkj)) pairs, by using a one-way
hash function H. What users make public is now H(pk), but users reveal their pk in the
transaction. Using a notion of “one-time secret key” sk, show that we can mitigate the
previous attack.

We now assume that pk is not public any more but that the hash of it is public. Until
pk is revealed, its discrete logarithm cannot be computed. User could still receive
payments on their H(pk). The problem is that pk must be revealed when the user
makes a transaction. Hence, one solution is that this user collects all his bitcoins
x1 + · · · + xm, makes his transaction, but pay the leftover to a freshly made pk′.
He/she should not pay to the same pk. Hence, his/her account pk has no more
bitcoins and he/she will use a new account pk′. Payments to his previous account
should not be made any more. In such situation, sk is used only once.

Q.3 Describe a structure of a wallet in which each user would have a unique secret K.

We can use K as a key of a PRF. We define skt = PRF(K, t) for t = 0, 1, . . . We
define the exponentials pkt and their hash. The wallet keeps a counter t. To receive
a payment, the user gives H(pkt) as a payment address. Every time the user makes
a transaction, it uses skt then increment t.

5


