Cryptography and Security - Deferred Final Exam
 Solution

Serge Vaudenay

2.3.2022

- duration: 1h
- no documents allowed, except one 2-sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 ElGamal over another Group

Let n be a positive integer. We consider the set of real angles $A=\left\{\frac{2 k \pi}{n} ; k \in \mathbf{Z}\right\}$ and the set of 2×2-matrices

$$
G=\left\{\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) ; \theta \in A\right\}
$$

Q. 1 Together with the matrix multiplication, prove that G is a cyclic group and give its order and a generator.

The lazy solution to this question can invoke smart algebra theorems. $A=\frac{2 \pi}{n} \mathbf{Z}$ is a group for the addition. The function $f: A \rightarrow G$ mapping $\theta \in A$ to $f(\theta)=$ $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ is actually homomorphic. This comes from that $f(\theta)$ is the matrix of a rotation by an angle θ. Hence, G inherint from the group structure of A. The group G is isomorphic to the quotient of A by the kernel of A. The kernel is clearly the set of multiples of 2π. Hence, G is actually isomorphic to \mathbf{Z}_{n}, which is cyclic. The rotation by $\frac{2 \pi}{n}$ generates all others so $f\left(\frac{2 \pi}{n}\right)$ is a genarator of G.
The standard solution would prove the group properties one after the other. We have

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right) \\
= & \left(\begin{array}{cc}
\cos \alpha \cos \beta-\sin \alpha \sin \beta & -\cos \alpha \sin \beta-\sin \alpha \cos \beta \\
\sin \alpha \cos \beta+\cos \alpha \sin \beta & -\sin \alpha \sin \beta+\cos \alpha \cos \beta
\end{array}\right) \\
= & \left(\begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right)
\end{aligned}
$$

(This proves the homomorphic property $f(\alpha) f(\beta)=f(\alpha+\beta)$.) So, G is closed under the multiplication. Associativity is obtained by

$$
(f(\alpha) f(\beta)) f(\gamma)=f(\alpha+\beta) f(\gamma)=f(\alpha+\beta+\gamma)=f(\alpha) f(\beta+\gamma)=f(\alpha)(f(\beta) f(\gamma))
$$

We have commutativity due to $f(\alpha) f(\beta)=f(\alpha+\beta)=f(\beta+\alpha)=f(\beta) f(\alpha)$. We have a neutral element $f(0)$ which is the identity matrix. The inverse of $f(\theta)$ is $f(-\theta)$ due to $f(\theta) f(-\theta)=f(\theta-\theta)=f(0)$. We easily see that $k \mapsto f\left(\frac{2 k \pi}{n}\right)$ is periodic of period n. So, G is an Abelian group of order n. We can see that $f\left(\frac{2 k \pi}{n}\right)=f\left(\frac{2 \pi}{n}\right)^{k}$ so $f\left(\frac{2 \pi}{n}\right)$ is a genarator of G.
Q. 2 Fully specify the adaptation of the ElGamal cryptosystem over the group G. Carefully specify domains and algorithms, and carefully verify correctness.
A secret key is an element $x \in \mathbf{Z}_{n}$.
A public key is an element of G obtained by $y=f\left(\frac{2 \pi}{n}\right)^{x}=f\left(x \frac{2 \pi}{n}\right)$.
A message is an element $\mathrm{pt} \in G$.
To encrypt pt with public key y, we pick a random $r \in \mathbf{Z}_{n}$ and produce $\left(f\left(\frac{2 \pi}{n}\right)^{r}, y^{r}\right) \in$ G^{2}.
To decrypt (u, v) with secret key x, we compute v / u^{x}.
If encryption was honestly done, then decryption gives $v / u^{x}=y^{r} / f\left(\frac{2 \pi}{n}\right)^{x r}=1$ so the cryptosystem is correct.
Q. 3 Make a complete analysis of the security of the proposed cryptosystem.

Given $y \in G$ we can find $\theta \in A$ such that $y=f(\theta)$ then find $k \in \mathbf{Z}$ such that $\theta=\frac{2 k \pi}{n}$. We have $y=f\left(\frac{2 k \pi}{n}\right)=f\left(\frac{2 \pi}{n}\right)^{k}$. So, the discrete logarithm problem in G is easy to solve. Hence, we can compute the secret key from the public key and solve the key recovery problem. This is a key recovery attack with no more priviledge than the access to the public key. The cryptosystem is badly insecure.

