# Cryptography and Security - Midterm Exam 

Serge Vaudenay

18.11.2021

- duration: 1h45
- no documents allowed, except one 2 -sided sheet of handwritten notes
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade
- answers should not be written with a pencil


## 1 Diffie-Hellman in an RSA subgroup

The crypto apprentice wants to run the Diffie-Hellman protocol, but instead of running it in a subgroup of $\mathbf{Z}_{p}^{*}$ with a prime $p$, he decides to run it in a subgroup of $\mathbf{Z}_{n}^{*}$ with an RSA modulus $n$. He wants $n$ to remain hard to factor, "for more security". One goal of the exercise is to see if $n$ indeed remains hard to factor.

We let $n=p q$. We let $g \in \mathbf{Z}_{n}^{*}$ and we denote by $m$ its order in the group. We denote $p^{\prime}$ resp. $q^{\prime}$ the multiplicative order of $g$ in $\mathbf{Z}_{p}^{*}$ resp. $\mathbf{Z}_{q}^{*}$. We assume that $n$ and $g$ are known by everyone.
Q. 1 Prove that both $p^{\prime}$ and $q^{\prime}$ divide $m$.
Q. 2 In this question, we assume that $q^{\prime}=1$ and $m>1$. Prove that anyone can factor $n$ easily.
Q. 3 We now assume that $p^{\prime}$ and $q^{\prime}$ are two different prime numbers. Prove that $m=p^{\prime} q^{\prime}$.
Q. 4 We still assume that $p^{\prime}$ and $q^{\prime}$ are different primes. We also assume that $m$ is known and easy to factor. Fully specify a Diffie-Hellman protocol. Pay special attention to protection against subgroup issues.
Q. 5 What is the problem if $m$ is not known by Alice or Bob?
Q. 6 If $m$ is prime, prove that either $p^{\prime}=m$ and $q^{\prime}=1$, or $p^{\prime}=1$ and $q^{\prime}=m$, or $p^{\prime}=q^{\prime}=m$. Q. 7 Is it a good idea to select $m$ prime?

## 2 ElGamal over Exponentials

We consider the following public-key cryptosystem:

- Setup $\left(1^{\lambda}\right)$ : generate a prime $q$ of size $\lambda$ and parameters for a cyclic group of order $q$. Select a generator $g$ of this group. Set $\mathrm{pp}=$ (parameters, $q, g$ ). Given pp, we assume that group operations are done in polynomial time complexity in $\lambda$.
- Gen(pp): pick $x \in \mathbf{Z}_{q}$ uniformly and $y=g^{x}$ in the group. The secret key is $x$ and the public key is $y$.
- Enc(pp, $y$, pt): pick $r \in \mathbf{Z}_{q}$ uniformly and output the ciphertext $(u, v)=\left(g^{r}, g^{\mathrm{pt}} y^{r}\right)$.
$-\operatorname{Dec}(\mathrm{pp}, x, u, v)$ : solve $g^{\mathrm{pt}}=v / u^{x}$ in pt.
We assume that the encryption domain is the set of small integers: pt $\in\{0,1, \ldots, P(\lambda)-1\}$, where $P$ denotes a polynomial which will be discussed.
Q. 1 Assuming that $2^{\lambda-1} \geq P(\lambda)$, prove that the cryptosystem is correct.
Q. 2 Propose a (non-polynomial) algorithm to do a key recovery attack and give its complexity. Note: correct answers with the lowest complexity will get more points.
Q. 3 Propose a polynomial-time algorithm to implement Dec.
Q. 4 Propose an appropriate way to select $P$ and $\lambda$.


## 3 Generator of $\mathbf{Q R}_{n}$

We take $n=p q$ with two different primes $p$ and $q$ which are such that $p^{\prime}=\frac{p-1}{2}$ and $q^{\prime}=\frac{q-1}{2}$ are two odd prime numbers. We let $\mathrm{QR}_{n}$ be the group of quadratic residues modulo $n$, i.e. all elements which can be written $x^{2} \bmod n$ for $x \in \mathbf{Z}_{n}^{*}$.
Q. 1 Prove that $\mathrm{QR}_{n}$ has order $\varphi(n) / 4$.
Q. 2 Prove that $\mathrm{QR}_{n}$ is cyclic. How many generators exist in $\mathrm{QR}_{n}$ ?
Q. 3 Propose an efficient algorithm to find a generator of $\mathrm{QR}_{n}$ which does not need the factorization of $n$ but may fail with negligible probability (in terms of $\lambda$, the bitlength of $p$ and $q$, i.e. $2^{\lambda-1}<p<2^{\lambda}$ and $2^{\lambda-1}<q<2^{\lambda}$ ).

