
Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

10.11.2022

– duration: 1h45

– no documents allowed, except one 2-sided sheet of handwritten notes

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

– answers should not be written with a pencil

The exam grade follows a linear scale in which each question has the same weight.

1 Expected Ciphertext Length for Perfect Secrecy

Let M be a plaintext domain of size #M ≥ 2n. We define a random plaintext X ∈ M of
distribution DX and a random key K ∈ K of distribution DK . We assume that the support of
DX isM. Let Enc/Dec be a cipher offering perfect secrecy for the distributions DX and DK .
We assume that the ciphertext Y = EncK(X) is a bitstring of finite length. That is, X ∈M,
K ∈ K, and Y ∈ {0, 1}∗. We denote by |Y | the length of the bitstring Y . The objective of
this exercise is to lower bound the expected length of a ciphertext E(|EncK(x)|) for any fixed
x ∈M and a random K ∈ K.

Q.1 In the following subquestions, we consider X uniformly distributed inM and k ∈ K fixed.
We define Y = Enck(X).

Q.1a For any i, prove that Pr[|Y | ≤ i] ≤ 2i+1−n.

HINT: start by proving Pr[|Y | = i] ≤ 2i−n.

To be able to decrypt correctly, Enck must be an injective function. Hence, there are
no more than 2i plaintexts which encrypt to a ciphertext of length i. Given that X
is uniform, we deduce Pr[|Y | = i] ≤ 2i/#M ≤ 2i−n. Using the geometric sum, we
obtain

Pr[|Y | ≤ i] ≤ (2i+1 − 1)2−n ≤ 2i+1−n

Q.1b Prove that

E(|Y |) = (n− 1)Pr[|Y | ≤ n− 1] +
+∞∑
i=n

iPr[|Y | = i]−
n−2∑
i=0

Pr[|Y | ≤ i]

We have

E(|Y |) =
+∞∑
i=0

iPr[|Y | = i]

=
+∞∑
i=n

iPr[|Y | = i] +
n−1∑
i=1

i (Pr[|Y | ≤ i]− Pr[|Y | ≤ i− 1])

=
+∞∑
i=n

iPr[|Y | = i] +
n−1∑
i=1

iPr[|Y | ≤ i]−
n−2∑
i=0

(i+ 1)Pr[|Y | ≤ i]

=
+∞∑
i=n

iPr[|Y | = i] + (n− 1)Pr[|Y | ≤ n− 1]−
n−2∑
i=0

Pr[|Y | ≤ i]

Q.1c Prove that E(|Y |) ≥ n− 2.

We have

E(|Y |)

= (n− 1)Pr[|Y | ≤ n− 1] +
+∞∑
i=n

iPr[|Y | = i]−
n−2∑
i=0

Pr[|Y | ≤ i]

≥ (n− 1)

(
Pr[|Y | ≤ n− 1] +

+∞∑
i=n

Pr[|Y | = i]

)
−

n−2∑
i=0

Pr[|Y | ≤ i]

= n− 1−
n−2∑
i=0

Pr[|Y | ≤ i]

≥ n− 1−
n−2∑
i=0

2i+1−n

= n− 1− (2n−1 − 1)21−n

≥ n− 2

Q.2 In the following subquestions, we consider X uniformly distributed inM and we assume
that K ∈ K follows the distribution DK . We define Y = EncK(X).

Q.2a Prove that E(|Y |) ≥ n− 2.

Thanks the to the previous questions, we have E(|Enck(X)|) ≥ n − 2 for any k.
Hence, E(|EncK(X)|) ≥ n− 2 for K random as well.

Q.2b Prove that the cipher provides perfect secrecy for X uniform inM.

Hint: invoke a theorem from the course.

We have seen in class that perfect secrecy in some distribution of supportM implies
perfect secrecy for any distribution of support included inM. This is the case of the
distribution of X (which is uniform).

Q.2c Prove that for any x ∈M, E(|EncK(x)|) ≥ n− 2.

Since x is in the support of X, we can consider probabilities conditioned to X =
x. Due to the independence between X and K, we have Pr[EncK(x) = y] =
Pr[EncK(X) = y|X = x] = Pr[Y = y|X = x]. Due to perfect secrecy, X and Y
are independent, so Pr[Y = y|X = x] = Pr[Y = y]. We deduce that EncK(x) and Y
follow the same distribution. Hence, E(|EncK(x)|) ≥ n− 2.

2 DDH Modulo pq

We consider a probabilistic polynomial-time algorithm Setup(1λ) → (pp, n, g) which takes a
security parameter λ and generates a cyclic group of order n and generator g, together with
the public parameters pp which are used to define the group operations. We recall the DDH
problem based on Setup:

DDH(λ, b)
1: Setup(1λ)→ (pp, n, g)
2: pick x, y, z ∈ Zn uniformly
3: if b = 1 then z ← xy
4: X ← gx, Y ← gy, Z ← gz

5: A(pp, n, g,X, Y, Z)→ t
6: return t

The advantage of the adversary A playing this game is

AdvA(λ) = Pr[DDH(λ, 1)→ 1]− Pr[DDH(λ, 0)→ 1]

We have seen in class that the DDH problem is easy if n has any small factor (larger than
1). In this exercise, we wonder what happens if n = pq with p and q large primes. In a
“Diffie-Hellman spirit”, the group is public and we assume that p and q are public too (hence,
provided in pp).

Q.1 In this question, we assume that n has a small prime factor p (to give an idea: a number of
10 log2 λ bits). In the following subquestions, we construct a probabilistic polynomial-time
adversary A with advantage larger than 1

2 .

Q.1a Given a polynomial-time algorithm which takes n as input and find a prime factor p
of 10 log2 λ bits, assuming that n has c.λα bits, for some constants c and α. Precisely
estimate its complexity in terms of λ.

With a simple sieving technique, the complexity is 2
1
2
log2 p arithmetic opera-

tions. Arithmetic operations have quadratic complexity in the length of n. This is
O(λ5(log n)2). We can do better by using the ECM method.

Q.1b Given w = n
p , show that it is easy to check if Zw is the solution to the computational

Diffie-Hellman problem with instance (Xw, Y w) in the subgroup generated by gw.
Assume that T is the complexity of a group multiplication. Precisely estimate its
complexity in terms of λ and T .

First of all, gw has order p, which is small. Hence, the baby-step giant-step algorithm
computes discrete logarithms in O(√p) group operations (of complexity T). This is
O(λ5T).
Finally, A returns 1 if and only if logZw = (logXw)× (log Y w) mod p.

Q.1c By using the previous questions, construct a polynomial-time adversary A, give its
complexity in terms of λ and T and show that it has an advantage in the DDH game
close to 1.

Overall, the complexity is dominated by O(λ5(T +(log n)2)). The complexity is poly-
nomial.
We have Pr[DDH(λ, 1) → 1] = 1 because we always have logZ = (logX) ×
(log Y) mod n in this case.
We have Pr[DDH(λ, 0) → 1] = 1

p because Zw is uniform in the subgroup generated
by gw and independent from X and Y .
Hence, the advantage is 1− 1

p which is close to 1.

Q.2 Let m, p, and q be primes such that p ̸= q and pq divides m− 1. Let h ∈ Z∗
m be random

and uniformly distributed. Prove that h
m−1

p mod m = 1 and h
m−1

q mod m = 1 are two
independent events of probability 1

p and 1
q respectively.

Let pα and qβ the largest powers dividing m − 1. We write m − 1 = pαqβk.
We know that Z∗

m is cyclic of order m − 1, hence isomorphic to Zm−1. Thanks
to the Chinese Remainder Theorem, this is isomorphic to Zpα × Zqβ × Zk. Let
Ψ : Z∗

m → Zpα × Zqβ × Zk be a group isomorphism. If h is uniform in Z∗
m, then

Ψ(h) = (hp, hq, hk) is uniform in Zpα × Zqβ × Zk. The event h
m−1

p mod m = 1

is equivalent to m−1
p (hp, hq, hk) = (0, 0, 0). Since m−1

p = pα−1qβk, m−1
p hq = 0 is

always the case, as well as m−1
p hk = 0. Hence, h

m−1
p mod m = 1 is equivalent to

m−1
q hp = 0. Since qβk is invertible modulo pα, this is equivalent to pα−1hp = 0,

which is equivalent to hp mod p = 0, which occurs with probability 1
p . Similarly, the

event h
m−1

q mod m = 1 is equivalent to hq mod q = 0, which occurs with probability
1
q . As hp and hq are independent, the events are independent as well.

Q.3 Given a constant c, we let f(λ) = c.λ3 be the required bitlength of a modulus m. Con-
struct Setup∗(1λ) → ((m, p, q), n, g) with pp = (m, p, q): a probabilitstic polynomial-time
algorithm which generates three prime numbers m, p, q such that m is of f(λ) bits, p and
q are different and of 2λ bits, a number n such that n = pq and n divides m− 1, and also
g ∈ Z∗

m which is of order n. Analyze its complexity heuristically.

We use the method seen in class to generate the prime numbers (i.e. keep picking
random numbers of appropriate length until one is prime, following a primality test).
Then, we take m = kpq+1 by keeping picking a random k until m is prime. Finally,
we pick g = hk mod m with h random until neither gp mod m nor gq mod m is equal
to 1. We have gn mod m = 1 so the order divides n but divides neither p nor q. The
order can only be n. The pseudocode is as follows:

Setup∗(1λ)
1: generate a random prime number p of 2λ bits§
2: generate a random prime number q of 2λ bits§
3: if p = q then start again
4: repeat
5: pick k of f(λ)− 4λ bits
6: m← kpq + 1
7: until m is prime
8: repeat
9: pick h ∈ Z∗

m at random
10: g ← hk mod m
11: until gp mod m > 1 and gq mod p > 1
12: return ((m, p, q), n, g)

The prime number generation has complexity O(λ4). The event p = q occurs with
negligible probability. The first loop has the same complexity of the prime number

generation, i.e. O(f(λ)4). We have seen in that the events h
m−1

p mod m = 1 and

h
m−1

q mod m = 1 are independent and of probability 1
p and 1

q respectively. Hence,

the condition to iterate the second loop occurs with probability 1− (1− 1
p)(1−

1
q) =

1
p + 1

q −
1
pq which is negligible. Hence, the second loop is unlikely to iterate. Its

complexity is O(f(λ)3). Overall, the complexity of Setup∗ is O(f(λ)4).

Q.4 Let Setup∗1 be defined by

Setup∗1(1
λ)

1: Setup∗(1λ)→ ((m, p, q), n, g)
2: g1 ← gq mod m
3: return (m, p, g1)

We define Setup∗2 similarly. Prove that if DDH is hard for Setup∗, then DDH is hard for
Setup∗1 and for Setup∗2.

We assume that DDH is hard for Setup∗ and we consider an adversary A playing the
DDH game with Setup∗1. We construct an adversary B(m, p, q, n, g,X, Y, Z) playing
the DDH game with Setup∗ as follows:

B(m, p, q, n, g,X, Y, Z)
1: (g′, X ′, Y ′, Z ′)← (gq, Xq, Y q, Zq) mod m
2: A(m, p, g′, X ′, Y ′, Z ′)→ t
3: return t

Picking x, y, z ∈ Zp then (X ′, Y ′, Z ′) = (gx1 , g
y
1 , g

z
1) gives the same distribution as

picking x, y, z ∈ Zn then (X ′, Y ′, Z ′) = (gqx, gqy, gqz). Similarly, picking x, y ∈ Zp

then (X ′, Y ′, Z ′) = (gx1 , g
y
1 , g

xy
1) gives the same distribution as picking x, y ∈ Zn

then (X ′, Y ′, Z ′) = (gqx, gqy, gqxy). Therefore, AdvA(λ) = AdvB(λ). By the DDH
assumption, this is negligible. Hence, for every A, AdvA(λ) is negligible. The result
for Setup∗2 follows by a change of notation p↔ q.

