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1 Wired Equivalent Privacy (WEP)

In this exercise, we study some real security flaws in the Wired Equivalent
Privacy (WEP) protocol used in 802.11 networks to protect the data at the
link-layer during wireless transmission. WEP relies on a 40-bit secret key
K shared between two communicating parties to protect the data of each
transmitted frame. In this exercise, we assume that K is a permanent key
which never changes its value. When the user A wants to send a frame of
data to B, he proceeds in the following 3 steps

• CRC encoding: Given an n-bit message M (n is a constant), A com-
putes the 32-bit parity check L(M), where L is a linear function that
does not depend on K (Note that the linear property of the function
L satisfies L(X ⊕ Y ) = L(X) ⊕ L(Y ) for any X,Y ). The plaintext is
(n + 32)-bit P = M‖L(M).

• Encryption: A encrypts P with the stream cipher RC4 using the secret
key K and a 24-bit initial vector IV assigned to each frame. The
ciphertext is C = P ⊕ RC4(IV,K).

• Transmission: A sends (IV, C) in clear to B over the radio link.

1. Some marketing media advertise that WEP encryption enforces a total
of 40 + 24 = 64 bits security strength. What do you think about this
statement? Justify your answer.

2. Explain how the receiver B uses K to extract the original message M

upon receipt of (IV, C).

3. In some poor implementations, the 24-bit IV is assigned at random to
each frame. Show that it leads to a serious security problem, when
one user sends or receives a large amount of data. Propose a better
solution.

4. Now we examine another security issue of WEP. Assume that an at-
tacker sitting in-the-middle has intercepted one frame of traffic data
(IV, C) from A destined for B. Show that the attacker, who does not
know K and does not bother to find K, can easily compute a valid
C ′ (C ′ 6= C) such that he can send the modified data (IV, C ′) to B

without fear of detection. How many different choices of such C ′ does
he have? Which property of cryptography is violated here?



2 Batch Verification of DSS Signatures

In this exercise, we consider a variant of the DSS signature from which we
remove some modulo q operations. Namely, r is computed as r = gk mod p

and the verification consists in checking that

r = g
H(m)

s
mod qy

r

s
mod q mod p.

All the other operations of this DSS variant are identical to those of the
original DSS. For the sake of simplicity, this variant will simply be called
DSS throughout the exercise.

We recall that g generates a subgroup of Z∗

p of order q. We denote by ℓp

and ℓq the respective sizes of p and q in bits.
Assume that we have n DSS signatures to verify. We need to check n

triplets (mi, ri, si), where mi is the ith message and (ri, si) is the corre-
sponding signature, for 1 ≤ i ≤ n. We assume that all signatures come
from the same signer and correspond to the same public key y and the same
parameters p, q, and g.

1. What is the complexity of sequentially verifying all the signatures in
terms of ℓp, ℓq, and n? (You can neglect the computation time of the
hash function.)

In order to speed up the verification of the signatures, we will perform
a “batch verification”, namely we will check all the signatures at the same
time. We consider a set A of N pairwise coprime numbers in Z∗

q which are
smaller than an upper bound B <

√
q. Then, we pick n different elements

a1, . . . , an in A. We define

R = ra1
1 ra2

2 · · · ran

n mod p,

G = a1H(m1)
s1

+ a2H(m2)
s2

+ · · · + anH(mn)
sn

mod q,

Y = a1r1
s1

+ a2r2
s2

+ · · · + anrn

sn
mod q.

A batch verification of these n signatures consists in verifying that

R = gGyY mod p.

2. Show that the batch verification succeeds when all the signatures
(mi, ri, si) for 1 ≤ i ≤ n are valid.

3. What is the complexity of the verification in terms of n, ℓp, ℓq, and B?

4. Let γ1 and γ2 be two elements of the subgroup generated by g such
that γ1 6= 1 and γ2 6= 1. Show that there exists at most one pair
(a1, a2) ∈ A×A with a1 6= a2 satisfying

γa1
1 γa2

2 ≡ 1 (mod p).



Hint: Given two such pairs (a1, a2) and (a′1, a
′

2) deduce that a′1 = a1

and a2 = a′2 from a1a
′

2 = a′1a2.

5. Let α1, β1, α2, β2 be arbitrary elements of the subgroup generated
by g, such that α1 6= β1 and α2 6= β2. Using result of the previous
question, show that there exists at most one pair (a1, a2) ∈ A×A with
a1 6= a2 satisfying

αa1
1 αa2

2 ≡ βa1
1 βa2

2 (mod p).

In what follows, for any invalid signature triplet (m, r, s) we assume that
r lies in the subgroup generated by g.

6. For n = 2, show that for any two triplets of DSS signatures (m1, r1, s1)
and (m2, r2, s2) such that at least one of them is invalid, the probability
that the batch verification fails is greater than or equal to

1 − 1

N2 − N
.

Hint: Separate the cases where one or two signatures are invalid.
For the latter case, use the previous question.

7. Using the parameters p = 11, q = 5, g = 4, y = 3 = 44 mod 11, n = 2,
a1 = 1, and a2 = 2, exhibit an example, where at least one signature
is invalid but the batch verification passes. We do not require to find
the mi’s here, but only the digests h1 = H(m1) and h2 = H(m2).



3 Conference Key Distribution System

We study a synchronous Conference Key Distribution System (CKDS) for
m > 2 users denoted by U0, U1, . . . , Um−1. Those m users are connected
in a ring network (see Figure 1), such that Ui can only send messages to
Uj, where j = i + 1 mod m for any i ∈ {0, 1, . . . ,m − 1}. This means that
Ui can receive messages from Uj only, where j = i − 1 mod m, for any
i ∈ {0, 1, . . . ,m − 1}.

U0

U1

U2

Um−1

Um−2

Figure 1: The CKDS ring network

The purpose of the CKDS is to derive one common communication key K

for all users over authenticated channels, so that they can hold a confidential
conference online. K is generated after several synchronized rounds among
the users: during the kth round, Ui sends out two messages denoted by
(Sk,a

i , S
k,b
i ) and receives two messages (Rk,a

i , R
k,b
i ). Thus, according to the

message transmission rule, we know that
{

S
k,a
i = R

k,a
j

S
k,b
i = R

k,b
j where j = i + 1 mod m.

Let us first examine a CKDS for m = 3 users U0, U1, U2. The protocol
proceeds in 2 synchronized rounds as shown in Algorithm 1.

1. Give the name of a famous protocol to solve the key distribution prob-
lem between m = 2 users?

2. Express K computed by each user in Algorithm 1 in terms of user
secrets N0, N1, N2 and public parameters g, p only.

3. Prove that each user does share the same conference key K.

4. Now, we extend the above CKDS to a CKDS for m = 4 users U0, . . . , U3

as follows. The setup and the first two rounds of the algorithm are the



Algorithm 1 The key generation algorithm of the CKDS for three users

Public parameters:
1: a large prime p, a generator g of Z∗

p

Setup:
2: Each Ui chooses a random number Ni ∈ Z∗

p and keeps it secret.
Key generation:
3: At the first round, each Ui computes S

1,a
i = gNi mod p and sends

(S1,a
i , 1).

4: At the second round, each Ui computes S
2,a
i = R

1,a
i · S

1,a
i mod p and

S
2,b
i = (R1,a

i )Ni · R1,b
i mod p. Ui sends (S2,a

i , S
2,b
i ).

5: Each Ui computes K = (R2,a
i )Ni · R2,b

i mod p

same as in Algorithm 1. After that, we add a third round in which
each Ui computes

S
3,a
i = R

2,a
i · S1,a

i mod p,

S
3,b
i = (R2,a

i )Ni · R2,b
i mod p,

and sends (S3,a
i , S

3,b
i ). At the end, each Ui computes

K = (R3,a
i )Ni · R3,b

i mod p. (1)

Prove that K computed by each user in Equation (1) is the same.

5. We investigate the security of the above CKDS protocol for m = 4.
Show that given S

2,b
0 , S

3,b
0 , S

3,b
1 , S

2,b
2 , the attacker (wire-tapper) can

reconstruct K without the knowledge of user secrets Ni.

6. For an arbitrary m-node CKDS communication network where all the
channels are assumed to be authenticated (yet insecure), we define the
Multi-Tap Resistance (MTR) by

MTR =
τ − 1

m
,

where τ is the minimum number of physical wires the wire-tapper
needs to tap in order to recover K. From the previous question derive
an upper bound of MTR for the above CKDS with m = 4.

7. Generalize the CKDS protocol for an arbitrary number m > 2 of users
U0, U1, . . . , Um−1. What is the exact total number of multiplications
over Z∗

p that each user must compute to obtain K? And what is the
exact total number of exponentiations over Z∗

p that each user must
compute to obtain K?


