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An RSA Variant with Public Exponent 3

In this problem, we consider a special variant of RSA with public exponent e that is not coprime
with ϕ(N). For simplicity, we focus on e = 3. More precisely, key generation works as follows:

• pick r1 of s
2 bits at random until p = 9r1 − 2 is prime

• pick r2 of s
2 bits at random until q = 3r2 − 1 is prime

• take N = pq, e = 3

• public key is (N, e), secret key is (p, q)

Cubic Residuosity

1. Let x ∈ Z
∗

q .

How many cubic roots can we have?

How to compute cubic roots in Z
∗

q?

2. Let x ∈ Z
∗

p.

Show that (x3)
p+2

9 is a cubic root of x3.
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3. Given x ∈ Z
∗

p, how many cubic roots can we have in Z
∗

p?

4. By using the Jacobi symbol and its computation rules, prove that −3 is a quadratic residue
in Z

∗

p.
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5. Let j = θ−1
2 mod p where θ is a square root of −3.

Show that j3 mod p = 1.

6. Deduce all cubic roots of 1 in Z
∗

p.
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7. Deduce a way to compute all cubic roots of cubic residues in Z
∗

p.

8. By using the Chinese Remainder Theorem, tell how many cubic roots cubic residues have
in Z

∗

N and how to compute them.
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We now denote Root(y, p, q) the function mapping any y ∈ Z
∗

N to the set of all its cubic
roots using the secret key. This function will be used throughout this problem.

Complexity of Cubic Roots

1. If x, y ∈ Z
∗

N are such that x 6≡ y (mod N) and x3 ≡ y3 (mod N), show that gcd(x −
y, N) = q.

2. Deduce that an oracle who can extract one cubic root from a cubic residue in Z
∗

N can be
used to factor N .
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Raw Encryption and Decryption

We consider the message space Z
∗

N . Encryption is made as in RSA, by raising to the power e

modulo N .

1. Show that decryption is ambiguous.

2. Devise a chosen ciphertext attack.
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Encryption and Decryption on a Reduced Space

Let n be such that 2n ≪ N . Let F be a random injection from {0, 1}n to Z
∗

N which is easy
to invert. We now consider the message space {0, 1}n. We define the encryption of x by
F (x)e mod N .

1. How can we decrypt now?

2. What is the probability (over the choice of F ) that there exists x such that decrypting
the encryption of x does not produce x?
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3. Show that key recovery is equivalent to factoring numbers like N .

4. What can we now say about the decryption problem?

5. Give at least one Boolean function on the plaintext that is not a hard core bit.
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Probabilistic Variant

Let n and k be integers such that k < n. We now consider that the message space is a
binary code of length n and dimension k. We consider a symmetric encryption scheme over the
plaintext/ciphertext space {0, 1}n and keyspace K defined by SymEnc and SymDec algorithms.
Let H be a random function from Z

∗

N to K. To encrypt a codeword x, we first pick a random
r ∈ Z

∗

N and we compute y = SymEncH(r)(x) and z = re mod N . The ciphertext is (y, z).

1. How to decrypt?

2. Assuming that the symmetric encryption is ideal and that K is large enough, what is the
probability that decryption is ambiguous?

3. Recall what is an adversary against the semantic security.
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4. Assume that we have an adversary A playing the semantic security game against our
new cryptosystem. We assume that the symmetric encryption scheme is an ideal cipher,
that is, H(r) fully specifies a random permutation over {0, 1}n. We further assume that
function H is only available through an oracle O, that is, nobody can reliably compute
H(r) without querying the oracle O with r to get H(r) in return. This way, A may query
the oracle O while playing the semantic security game.

(a) Show that if A does not query O with the r chosen by the challenger, the advantage
of A in the semantic game is zero.

(b) By simulating O and several parts of the semantic game, deduce that if the advantage
of A is ε, we can transform A in an algorithm which given z = r3 mod N for a random
r can deduce r or other cubic roots of z with probability ε.
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(c) Deduce that if the advantage of A is ε, we can factor N with probability ε.

(d) Deduce that if factoring N is hard, if the symmetric encryption is ideal, and if H is
a random oracle, this cryptosystem is semantically secure.
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