
Family Name: .

First Name: .

Section: .

Advanced Cryptography

Midterm Exam
Solutions

May 19th, 2006

Duration: 2 hours 30 minutes

This document consists of 12 pages.

Instructions

Electronic devices are not allowed.

Answers must be written on the exercises sheet.

This exam contains 2 independent exercises.

Answers can be either in French or English.

Questions of any kind will certainly not be answered. Potential errors in these sheets are part
of the exam.

You have to put your full name on each page and you have to do it now.

1 Attack on a simple Feistel Scheme

Let C be the block cipher that consists of the 2-round Feistel scheme of Figure 1. The plaintext
is denoted by x and the output ciphertext by y.

⊕

⊕

xr

yℓ yr

zr

xℓ

zℓ

F1

F2

Figure 1: 2-round Feistel scheme.

We use the notation xℓ, yℓ (resp. xr, yr) for the plaintext/ciphertext on the left (resp. right)
leave, i.e., x = xℓ‖xr and y = yℓ‖yr where the operator “‖” denotes the concatenation.

1. Draw the inverse scheme for the Feistel scheme of Figure 1.

⊕

yℓ

zℓ

yr

zr

⊕

xℓ xr

F2

F1

Make care that F−1
i perhaps do not exist.

2

We consider that the functions Fi simply performs a xor between the input and a subkey.
We denote by k1 the subkey of the first round, and by K2 the subkey of the second round.
Consequently, we have Fi(α) = α⊕ ki.

2. Express zℓ, zr in term of xℓ, xr, k1.

zℓ = xr

zr = xℓ ⊕ xr ⊕ k1

3. Express yℓ, yr in term of xℓ, xr, k1, k2.

yℓ = xℓ ⊕ xr ⊕ k1

yr = xℓ ⊕ k1 ⊕ k2

4. Compute the differential coefficient DPC(a, b) for any fixed (unknown) a, b.

DPC(a, b) = Pr[C(X ⊕ a) = C(X)⊕ b]

= Pr[(xℓ ⊕ aℓ ⊕ xr ⊕ ar ⊕ k1)‖(xℓ ⊕ aℓ ⊕ k1 ⊕ k2)

= (xℓ ⊕ xr ⊕ k1 ⊕ bℓ)‖(xℓ ⊕ k1 ⊕ k2 ⊕ br)]

= Pr[aℓ ⊕ ar = bℓ and aℓ = br]

=

{

1 when aℓ ⊕ ar = bℓ and aℓ = br

0 otherwise

3

5. Consider xℓ, yℓ, ki ∈ {0, 1}. Compute [C]1 the distribution matrix of C at order 1.

First, you compute the ouptuts with respect to the input and the key:

C(00) C(01) C(10) C(11)

k1‖k2 = 00 00 10 11 01
k1‖k2 = 01 01 11 10 00
k1‖k2 = 10 11 01 00 10
k1‖k2 = 11 10 00 01 11

You finally obtain the following probabilities:

y = 00 y = 01 y = 10 y = 11

x = 00 1/4 1/4 1/4 1/4
x = 01 1/4 1/4 1/4 1/4
x = 10 1/4 1/4 1/4 1/4
x = 11 1/4 1/4 1/4 1/4

6. Is the cipher C a markov cipher? Justify your answer.

Yes, it is a Markov Cipher.
The definition is the following, if DPC

x (a, b) = EX(DP(a, b)] then C is a Markov
cipher. Using the response of point 4, it is straightforward.

7. Does C provide perfect secrecy if it is used only once? Justify your answer.

Yes, it provides perfect secrecy.
From point 5, we note that [C]1 is equal to [C∗]1, which implies that Dec1[C] = 0
and thus C provides perfect secrecy.

4

8. Using two queries, define an efficient distinguisher between C and the perfect cipher C∗.
Compute its advantage.

We can use the work done at point 4. In fact we are running a differential distin-
guisher.
Let k the number of bits per block of the cipher C.

(a) pick x, a ∈ {0, 1}k

(b) submit x to the encryption oracle, i.e. y1 ← C(x)

(c) submit x + a to the encryption oracle, i.e. y2 ← C(x + a)

(d) if y1 ⊕ y2 = (aℓ + ar)‖aℓ

→ output 1

(e) else

→ output 0

Here, we have an input difference of a = aℓ ⊕ ar,

• if the encryption oracle implements C, we always have an output difference of
b = (aℓ + ar)‖aℓ (see point 4), i.e. the probability is 1.

• if the encryption oracle implements C∗, we have this difference with probability
2−k.

Thus, the advantage is 1− 2−k considering a k-bit C.

5

2 GCM: the Galois Counter authenticated encryption Mode

We consider 128-bit strings as elements of the Galois field GF(2128) so that the addition cor-
responds to the bitwise XOR operation denoted “⊕” and the multiplication is denoted by “·”.
We assume we have a conventional choice for the representation of the Galois field.

We consider a keyed hash function which, given a bitstring X of bitlength multiple of 128
and a 128-bit key H defines

GHASHH(X) = X1 ·H
m ⊕ · · · ⊕Xm ·H

where X = X1|| · · · ||Xm is the decomposition of X into m blocks of 128 bits.

1. Assuming that H is uniformly distributed, show that for any m, GHASHH is a m2−128-
XOR-universal hash function from the set of bitstrings of length up to 128m to the set of
128-bit strings.

Recall: an ε-XOR-universal hash function hK is a family of functions depending on some
parameter K such that for any different x and y and any δ, we have

Pr
K

[hK(x)⊕ hK(y) = δ] ≤ ε

when K is uniformly distributed.

First, note that

Pr[H(x)⊕H(y) = a] = Pr[(X1 ⊕ Y1)H
m ⊕ · · · ⊕ (Xm ⊕ Ym)H = a]

We see that we have a polynom of degree m. Such a polynom have at most m
solutions, but there is 2128 possibilities for H.
Thus, the above probability is at most m

2128 and we conclude that we have a m2−128-
XOR-universal hash function.

6

X1

⊕

Y1

CIPHK

X2

⊕

Y2

CIPHK

CB1 CB2

ICB · · ·

· · ·

inc inc

Figure 2: GCTRK(ICB, X)

Given a 128-bit string X, we define XH of 96 bits and XL of 32 bits such that

X = XH‖XL.

The function inc(X) is defined as follows:

inc(X) = XH‖X
′
L

where X ′
L = XL + 1 mod 232 and XL is considered as an integer.

We consider a block cipher with 128-bit blocks which, given a block x and a key K defines
a ciphertext block CIPHK(x). We define GCTRK(ICB, X) (see Figure 2), the encryption
of an arbitrary nonempty bitstring X by key K in CTR mode with initial counter block
ICB by

GCTRK(ICB, X) = Y1|| · · · ||Yn−1||Yn

with
Yi = Xi ⊕ CIPHK (CBi) , X = X1|| · · · ||Xn−1||Xn

and
CBi = inc(CBi−1), CB1 = ICB

where Xi are 128-bit blocks and Xn is a nonempty string of length at most 128.
When X is of length 0, GCTRK(ICB, X) is the empty string.

2. Show that the length of the ciphertext and the length of the plaintext are the same.

We note that Yi is the result of a xor between Xi and a random value. If Xi is non
empty, then Yi in non-empty too and when Xi is empty Yi is empty. Thus, they
have the same length.

7

3. Let ICB and ICB′ be two possible values for the initial counter block.
The ith counter block of ICB (resp. ICB′) is denoted CBi (resp. CB′

i).
Let X and X ′ be two arbitrary plaintexts of length (in blocks) less than 232.
The ith block of X (resp. X ′) is denoted Xi (resp. X ′

i).
Let Y and Y ′ be the ciphertexts, i.e. Y = GCTRK(ICB, X) and Y ′ = GCTRK(ICB′, X ′).
The ith block of Y (resp. Y ′) is denoted Yi (resp. Y ′

i).

What can happen if there exists i, j such that CBi = CB′
j?

We have
Xi = Yi ⊕ CIPHK(CBi)

X ′
j = Y ′

j ⊕ CIPHK(CB′
j)

Thus,
Xi ⊕X ′

i = Yj ⊕ Y ′
j

Suppose we know Xi, Yi since there are encrypted by us. If you find Y ′
j you can

decrypt, i.e.
X ′

i = Xi ⊕ Yj ⊕ Y ′
j

You can also note that CBi+k = CB′
j+k for any k = 0, 1, 2, . . . since

CBi+1 = inc(CBi)

CB′
j+1 = inc(CB′

j)

Thus, you can decrypt the rest of the conversation.

We now assume that all ICB values are pairwise different and such that the 32 least
significant bits consist of a fixed block b. Namely, we have ICB = IV||b where IV is a
nounce.

4. Show that for all i, j we have CBi 6= CB′
j .

Pr[CBi = CB′
j] = Pr[IV‖bi = IV′‖b′i]

= Pr[IV = IV′ and bi = b′i]

= 0

8

5. Assuming there exists i, j such that Yi = Y ′
j , deduce some mutual information on Xi and

X ′
j .

Let
Yi = Xi ⊕ CIPHk(CBi)

and
Y ′

j = X ′
j ⊕ CIPHk(CB′

j)

If Yi = Y ′
j , then we have

Xi ⊕X ′
j = CIPHk(CBi)⊕ CIPHk(CB′

j)

6. We assume a model where an adversary can submit chosen plaintexts and receive a fresh
ICB together with the corresponding ciphertext in return. Deduce a distinguisher which
can submit a total number within the order of magnitude of 264 blocks of plaintext and
have an advantage within the order of magnitude of 1

2 .

We can pick plaintexts Xi and submit them to an oracle which returns the corre-
sponding Yi together with the IVi.
Using the previous result, we see that if CBi = CB′

j , we have Xi ⊕X ′
j = Yi ⊕ Y ′

j .
We submit queries to the oracle until we have ICBi = ICBj . Then if Xi⊕X ′

j = Yi⊕Y ′
j ,

we ouptut 1, else we output 0.

The probability of success of such a distinguisher is approximatively 1 − e
− 2

64
√

2128

(using the birthday paradox).

9

We define two algorithms

authenticated encryption: ENCK(P, A, IV) = (C, T)
given a plaintext P , and additional authenticated data A, and an initialization vector
IV (to be used as a nounce), computes a ciphertext C and a t-bit tag T

authenticated decryption: DECK(IV, A, C, T) = P (or fail)
given the initial vector, the additional authenticated data A, the ciphertext C, and
the tag T , authenticates A and C and recovers the plaintext P or tell that A and C
are not authenticated.

For simplicity, we assume that the length of C is multiple of 8 and that IV is of 96 bits.

Given a bitstring x of length at most 128, we define pad(x) the string x concatenated with
enough zero bits to reach a full block length.

The authenticated encryption is defined by first letting H be the encrypted block by
CIPHK of the all-zero block, letting J0 = IV||b, letting C = GCTRK(inc(J0), P), letting
S = GHASHH(pad(A)||pad(C)||ℓA||ℓC) where ℓA and ℓC are the bitlength of A and C
respectively, and letting T be the t most significant bits of GCTRK(J0, S).

7. Define the authenticated decryption algorithm.

Encryption, input P, A, IV :

(a) H ← CIPHK(000 · · · 0)

(b) J0 ← IV‖b

(c) C ← GCTRK(inc(J0), P) which is equal to P ⊕ inc(J0)

(d) S ← GHASHH(pad(A)‖pad(C)‖ℓa‖ℓc)

(e) T ←MSBt[GCTRK(J0, S)]

(f) output (C, T)

Decryption, input A, IV, C, T :

(a) H ← CIPHK(000 · · · 0)

(b) J0 ← IV‖b

(c) S ← GHASHH(pad(A)‖pad(C)‖ℓa‖ℓc)

(d) if T = MSBt[GCTRK(J0, S)]

→ output P ← GCTRK(inc(J0), C)

which is equal to C ⊕ inc(J0) = (P ⊕ inc(J0))⊕ inc(J0)

(e) else

→ output fail

10

8. We define GMACK(A, IV) = T for T such that there exists C such that ENCK(∅, A, IV) =
(C, T) where ∅ denotes a string of length zero.

What kind of cryptographic primitive do we obtain?

A message authentication code

9. Let H be as defined in the authenticated encryption. Let IVi, i = 1, . . . , n be n arbitrary
pairwise different initial vectors. They define J i

0, i = 1, . . . , n.

Assuming that CIPHK behaves like a perfect random function (PRF) when K is random,
show that for any pairwise different h, j1, . . . , jn we have Pr[H = h, J i

0 = ji; i = 1, . . . , n] =
2−128(n+1).

Pr[H = h, ∀i = 1..n : J i
0 = ji]

indep
= Pr[H = h] ·

n
∏

i=i

Pr[J0 = ji]

= Pr[CIPHK(000 · · · 0) = h] ·
n

∏

i=i

2−128

= Pr[CIPHK(000 · · · 0) = h] · 2−128n

CIPHK≈PRF
= 2−128(n+1)

10. Write how T is obtained depending on t, H, J0, and A by using only the pad and GHASH

functions.

ENCK(∅, A, IV) implies that

T = MSBt (GCTR (J0, S))

= MSBt (GCTRK (J0, GHASHH (pad(A)‖∅‖ℓA‖0)))

= MSBt (CIPHK (J0)⊕ GHASHH (pad(A)‖ℓA‖0))

11

11. We assume a model where the adversary can choose values for A and get a fresh IV and a
128-bit T = GMACK(A, IV) in return (i.e. t = 128). The goal of the adversary is to output
an A that was not submitted together with any IV and the right value for GMACK(A, IV).

Assuming that CIPHK behaves like a perfect random function when K is random, show
that the success probability of the adversary limited to n queries is upper bounded by
(m + 1)2−128.

Hint: consider the case where the adversary outputs a fresh IV and the case where she
reuses a received one. In the former case, show that the probability of success is bounded
by 2−128. In the latter case, show that it is bounded by m2−128 where m is the maximum
length in blocks of a value A.

Here, you can make queries to an oracle with input A and you receive responses of
the form IV, T . Your objective is to output a valid triplet (A, IV, T) which was not
generated by the oracle.
We describe the attack as following

(a) for i = 1 to n loop

i. select Ai

ii. submit Ai to the oracle, i.e. you obtain IVi, Ti

You have know a list of n elements of the form (Ai, IVi, Ti) and you are searching to
build a n + 1 element.
Here we distiguish two cases:

Reuse an IV: If you reuse an IV, others IV’s are not useful for you. In short, you
are looking for a Â such that

GHASHH(pad(A)‖ℓA‖0) = GHASHH(pad(Â)‖ℓ
Â
‖0)

and thus your are trying to find a collision on GHASH. From point 1, we deduce
that this occurs with probability at most m2−128.

Fresh IV: In this case you can use no previous query. Here, you are looking for a
pair ÎV, Â such that

CIPHK (IV‖b)⊕GHASHH (pad(A)‖ℓA‖0) = CIPHK

(

ÎV‖b
)

⊕GHASHH

(

pad(Â)‖ℓ
Â
‖0

)

and this occurs with probability 2−128.

We finally have

Pr[success] = Pr[success|fresh IV] · Pr[fresh IV] + Pr[success|reuse IV] · Pr[ruse IV]

≤ Pr[success|fresh IV] + Pr[success|reuse IV]

≤ (m + 1)2−128

Note: this exercise is inspired by publication NIST SP 800-38D, April 2006.

12

