\qquad
\qquad
\qquad

Advanced Cryptography

Final Exam

July $20^{\text {th }}, 2007$

Duration: 3 hours 45 minutes

This document consists of 9 pages.

Instructions

Electronic devices are not allowed.

Answers must be written on the exercises sheet.

This exam contains 2 independent exercises.
Answers can be either in French or English.
Questions of any kind will certainly not be answered. Potential errors in these sheets are part of the exam.

You have to put your full name on the first page and have all pages stapled.

1 RSA with a counter

In this exercise, we consider the plain RSA protocol, i.e.
Setup Let $N=p q$ and $\varphi(N)=(p-1)(q-1)$ where p, q are two random $\frac{\ell}{2}$-bit primes.
Pick a random e such that $\operatorname{gcd}(e, \varphi(N))=1$ and let $d=e^{-1} \bmod \varphi(N)$
The public key is $K_{p}=(e, N)$ and the private key is $K_{s}=(d, N)$.
Encryption On input message $m \in\{0, \ldots, N-1\}$, the ciphertext is $c=m^{e} \bmod N$.
Decryption On input ciphertext c, the message is recovered computing $m=c^{d} \bmod N$.
We assume a protocol in which every messages are RSA-encrypted with exponent $e=3$. To protect the sequentiality of protocol messages, messages are concatenated with a 32 -bit counter before encryption. Hence, if Alice wants to send a $i^{\text {th }}$ message equal to m to Bob, she sends (format $\left.(m) \cdot 2^{32}+i\right)^{e} \bmod N_{B}$ where N_{B} is Bob's RSA modulus and format (m) is a formatted string consisting of m concatenated with an integrity check $H(m)$. Uppon reception, Bob decrypts, checks that the index number i is as expected, checks the redundancy in the formatted string, and finally extracts m. Messages from Bob to Alice use another counter and Alice's RSA modulus N_{A}.

1. Which security property is protected by this protocol? Which security property is not? (Confidentiality? Authentication? Integrity?) Explain why.
2. After Alice sends some $a=x^{e} \bmod N_{B}$ to Bob, an adversary impersonates the response "could you repeat please" from Bob to Alice. Alice repeats the same message by sending some $b=y^{e} \bmod N_{B}$.
(a) What is the relation between x and y ?
(b) In the ring $\mathbb{Z}_{N_{B}}[z]$ of polynomials with unknown z and coefficients in $\mathbb{Z}_{N_{B}}$, show that $z-x$ is a factor of $z^{3}-a$ and $(z+1)^{3}-b$.
(c) Deduce that $z-x$ is the gcd of $z^{3}-a$ and $(z+1)^{3}-b$ in this ring.
(d) From the previous question, apply the Euclid algorithm to find a rational expression for x in terms of a and b.
3. Can this extend to $e=65537$?

2 RSA Forgeries

We consider the plain RSA signature scheme, i.e.
Setup. Let $N=p q$ and $\varphi(N)=(p-1)(q-1)$ where p, q are two random $\frac{\ell}{2}$-bit primes.
Pick a random e such that $\operatorname{gcd}(e, \varphi(N))=1$ and let $d=e^{-1} \bmod \varphi(N)$
The public key is $K_{p}=(e, N)$ and the private key is $K_{s}=(d, N)$.
Signature. On input message $m \in\{0, \ldots, N-1\}$, the sign algorithm $\operatorname{sign}_{K_{s}}(m)$ outputs $\sigma=m^{d} \bmod N$.

Verification. On input message-signature pair (m, σ), the verify algorithm verify ${ }_{K_{p}}(m, \sigma)$ outputs 1 when $m=\sigma^{e} \bmod N$ and 0 otherwise.

1. Recall what is an existential forgery.
\square
2. Without any sample of valid message-signature pair, explain how you can build existential forgeries.
3. Recall what is an universal forgery.
4. In a chosen adversarial model, the adversary can query a sign oracle. On input m, the sign oracle outputs a signature σ such that verify $(m, \sigma)=1$.

You can query the sign oracle once, explain how you can build universal forgeries.
5. The above attack is done in the chosen message adversarial (CMA) model. Is this forgery still possible in the known message adversarial (KMA) model? Explain your answer.

The plain RSA signature is defined only on input messages belonging $\{0, \ldots, N-1\}$. In order to sign longer messages, such as a file, we introduce a hash function. Let $F:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell}$ be the hash function used as preprocessing where $\ell=\left\lfloor\log _{2}(n)\right\rfloor$. The new signature scheme works as follows:

Setup. No change.
Signature. On input $m \in\{0,1\}^{*}$, the new sign algorithm $\operatorname{sign}_{K_{s}}^{*}(m)$ outputs $\sigma^{*}=\operatorname{sign}_{K_{s}}(F(m))$.
6. Express the signature σ^{*} of m in terms of F, m, n and d.

Describe the new verify algorithm verify ${ }^{*}\left(m, \sigma^{*}\right)$.

Consider that $m=m_{1}\left\|m_{2}\right\| \ldots \| m_{t}$ where the m_{i} are ℓ-bit blocks. We define the hash function F by

$$
\begin{array}{rll}
F: & m & \mapsto f=F(m) \\
& m_{1}\left\|m_{2}\right\| \ldots \| m_{t} & \rightarrow f=m_{1} \cdot m_{2} \cdot \ldots \cdot m_{t} \bmod n
\end{array}
$$

7. Is this preprocessing solving the existential forgery of question 2? If no, describe the new attack.
8. Is this preprocessing solving the unviersal forgery of question 4? If no, describe the new attack.
\square
9. Which assumption(s) on F is (are) necessary to obtain a secure signature scheme?
