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1 Substitution-Permutation Networks

We consider a block cipher C : {0, 1}n×{0, 1}k → {0, 1}n based on a substitution-permutation
network (SPN). C is defined on n-bit plaintext x and k-bit key K and outputs an n-bit ciphertext
y. C consists of r−1 rounds as described on Figure 1 followed by a round depicted on Figure 2.

Each round i uses a subkey Ki except for the last round which uses two subkeys Kr and
Kr+1. All subkeys are derived from K.

Each round uses b substitution boxes (s-boxes) S1, . . . , Sb in parallel over W and a bijective
mapping L : W b → W b where W = {0, 1}n

b . We say that L is linear in the sense that
L(x + y) = L(x) + L(y) for any x and y.
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Figure 1: The ith round of C for 1 ≤ i < r.
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Figure 2: The last round of C.

1. What are the respective values of n, k, and b for the AES?

2. Which AES subroutine plays the role of L?

We define the branch number B of a linear mapping f : W b ←W b by

B = min
x 6=0

[hw(x) + hw (f(x))]

where the hw(x) is the hamming weight per element, i.e. the number of non-zero W -element of
the vector x (of b elements).

3. Show that 2 ≤ B ≤ b + 1.
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4. Recall the definition of a multipermutation for f .

5. Show that a linear multipermutation from W b to W b is equivalent to a linear mapping
with branch number equal to b + 1.

6. What is the branch number B of L in the case of the AES?
Hint: The 4x4 matrix in MixColumns defines a multipermutation.

3



Let X and X ′ be two distinct inputs of C and let ∆X = (∆X1, . . . ,∆Xb) = X ⊕X ′. We
say that the s-box Si in round j is active if its input value is different from the CK(X) to the
CK(X ′) calculations.

7. Let X and X ′ be two distinct inputs of C. Give ℓ, the minimum number of active s-boxes
in terms of the branch number B when r = 1 and when r = 2.
Deduce the value ℓ for the general case in terms of B and r.
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We define the coefficient DP
S
max of the s-boxes by

DP
S
max = max

α 6=0,β,i
DP

Si(α, β)

A differential caracteristic of C is a tuple Ω = (∆1, ∆2, . . . ,∆r+1) where ∆i is the input
difference at the round i for 1 ≤ i ≤ r and ∆r+1 is the output difference of C. We assume
∆1 6= 0. We define

P(Ω) = DP
C1(∆1, ∆2) · DP

C2(∆2, ∆3) · . . . · DP
Cr(∆r, ∆r+1).

Let Pmax = maxΩ P(Ω).

8. Show that
Pmax ≤

(

DP
S
max

)ℓ

where ℓ is defined in question 7.

9. It can be shown that DP
S
max = 2−6 for the AES. What is the value of Pmax for the AES

when r = 4, 6, 8?
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For simplicity, we consider that the AES is made of r identical rounds. In other words, the
last round is equal to the previous ones.

10. Denote by G the two first rounds of AES “glued” together. What is the branch number
of G?

11. Give a new bound on the maximal probability of a differential caracteristic Pmax of the
AES on r rounds when r is even.

12. As before, DP
S
max = 2−6 for the AES. What is the value of Pmax for the AES r = 4, 6, 8?
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2 Finding Collisions

Let D be some finite set and f : D → D be a function defined on this set. Our objective is to
find a collision on f , i.e., a pair (x, y) ∈ D2 such that f(x) = f(y) and x 6= y. Given an initial
element x0 ∈ D, define the sequence {xi}i≥0 by xi = f(xi−1).

1. Explain why the sequence eventually becomes periodic.

There must exist λ and µ such that x0, . . . , xµ+λ−1 are all distinct but xi = xi+λ for all i ≥ µ.
The elements x0, . . . , xµ−1 form the tail of the sequence, the elements xµ, . . . , xµ+λ−1 constitute
the cycle of the sequence. This is represented on Figure 3. Obviously, the pair (xµ−1, xµ+λ−1)
is a collision for f .

Figure 3: The tail and the cycle of the {xi} sequence.

2. We assume in this question that the exact value of λ is known (we will see later how to
compute this value). Give the value of θ for which Algorithm 1 outputs a collision for
f . Give, in terms of λ and µ, the total number of evaluations of the function f in this
algorithm.
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x← x0

y ← x0

for i = 1, . . . , θ do
x← f(x)

end

loop

x′ ← f(x)
y′ ← f(y)
if x′ = y′ then return (x, y)
x← x′

y ← y′

end

Algorithm 1: Finding a Collision on f when λ is known (for a given x0).

From the previous question we know that, for a given x0, the knowledge of λ is sufficient to
efficiently find a collision on f . We now consider the problem of finding this value λ. For this
we consider Algorithm 2, which outputs λ with probability p (when f is sampled uniformly at
random) or loops forever.

x← x0

y ← x0

i, j ← 0
loop

x← f(x)
i← i + 1
if x = y then return i− j
if x < y then y ← x and j ← i

end
Algorithm 2: Finding λ for a given x0.

3. Explain in which case Algorithm 2 terminates and which case it does not. Deduce the
value of p in terms of λ and µ.
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4. Consider the case where Algorithm 2 terminates. Show that on average it performs µ+ 3

2
λ

evaluations of the function f .

Denoting N the cardinality of D, it can be shown that on average µ = λ =
√

πN/8.

5. Using the results of the previous questions, show that on average one needs 8 ·
√

πN/8
evaluations of f to find a collision using algorithms 1 and 2. What can you say about the
memory requirements of this method?
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We now want to improve the running time of the previous method by using a partitioning

technique in Algorithm 2. We replace Algorithm 2 by Algorithm 3. We denote p′ the probability
that Algorithm 3 outputs λ (so that this algorithm loops forever with probability 1− p′).

x← x0

y0, y1, . . . , yk−1 ←∞
yx mod k ← x
i, j0, j1, . . . , jk−1 ← 0
loop

x← f(x)
i← i + 1
if x = yx mod k then return i− jx mod k

if x < yx mod k then yx mod k ← x and jx mod k ← i
end

Algorithm 3: Finding λ for a given x0 using k partitions.

6. Explain in which case Algorithm 3 terminates and which case it does not. Deduce the
value of p′ in terms of λ, µ, and k.

7. Let S denote the number of partitions for which the minimum lies on the cycle. Consider
the case where Algorithm 3 terminates (so that Pr[S = 0] = 0). Assuming (for simplicity)
that µ = λ, compute Pr[S = u] for 0 < k ≤ u.
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8. Consider the case where Algorithm 3 terminates and assume that µ = λ. Using the
previous question, show that on average it performs µ + λ + λ

k+1
(2− k

2k−1
) evaluations of

the function f .

9. Assume that 1≪ k ≪
√

N and that µ ≈ λ ≈
√

πN/8. Using the previous questions, show
that on average one needs 5 ·

√

πN/8 evaluations of f to find a collision using algorithms 1
and 3. What can you say about the memory requirements of this method?
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