
Family Name: .

First Name: .

Section: .

Advanced Cryptography

Midterm Exam
Solution

May 22th, 2007

Duration: 3 hours 45 minutes

This document consists of ?? pages.

Instructions

Electronic devices are not allowed.

Answers must be written on the exercises sheet.

This exam contains 2 independent exercises.

Answers can be either in French or English.

Questions of any kind will certainly not be answered. Potential errors in these sheets are part
of the exam.

You have to put your full name on the first page and have all pages stapled.

1 Substitution-Permutation Networks

1. For the AES, we have n = 128, k = 128, b = 16

2. The linear transformation of the AES is the MicColumns subroutine.

3. Since the input x is different from 0, hw(x) ≥ 1. Each round is a permutation implies that
an input difference will produces an output difference and thus hw(y) ≥ 1. So, B ≥ 2.

Now, we can limit the input diffence to one block, i.e. hw(x) = 1. The maximal output
difference is when all blocks are differents, i.e. hw(y) ≤ b. So, B ≤ b + 1.

4. Consider x = (x1, ldots, xb) and x′ = (x′

1, ldots, x′

b) where each xi, x
′

j belongs to the set
W . Let y = (y1, ldots, yb)← f(x1, ldots, xb) and y′ = (y′1, ldots, y′b)← f(x′

1, ldots, x′

b).

f is a multipermutation if and only if a difference of r elements between x and x′ implies
a difference of b− r + 1 elements between y and y′.

5. We consider the tuples (x1, ldots, xb, y1, ldots, yb) and (x′

1, ldots, x′

b, y
′

1, ldots, y′b) form the
previous question. f is a multipermutation if and only if there is at least b + 1 different
elements between these two tuples which means that the branch number B of f is b + 1.

6. In question 1, we saw that the linear transformation is MixColumns. Thus, L (in this case)
is a multipermutation with 16 elements of 8 bits to 16 elements of 8 bits. So, the branch
number is 17.

7. When r = 1: We consider one round of C. Thus, there is no linear transformation. There
is at least 1 active s-box since the input is different. So, ℓ = 1.

When r = 2: We consider two rounds of C. There is at least one different block at the
input of C, so at least one active s-box at the first round. This implies that there is
at least one different element at the input of L.

Around L, there is at least B active s-boxes. In other words, there is at least B
actives s-boxes in this round and in the next one. So, ℓ = B.

For any r ≥ 3: There is B active s-boxes around each linear transformation. So, the r−1
first rounds, contains at least B active s-boxes around it. The last round contains
only one active s-box. Let nA, resp. nB, the number of actives s-boxes at the input,
resp. output. We have

2ℓ = nA + B + B + B + . . . + B + nB

Here, we counted two times each active s-box. Finally, we have ℓ = (r−1)·B
2 + 1.

8. Let Ω∗ = (∆∗

1, ∆
∗

2, . . . ,∆
∗

r + 1) be the differential charaterisitc which maximizes P(Ω∗).
A differential charaterisitc uses two distinct input for C and so we know that there is at
least ℓ actives s-boxes. Let ℓi be the number of actives s-boxes at round i for 1 ≤ i ≤ r.
Naturally, we have

∑r
i=1 ℓi = ℓ.

We can write:

Pmax = max
∆1,∆2,...,∆r+1

DP
C1(∆1, ∆2) · . . . · DP

Cr(∆r, ∆r+1)

= DP
C1(∆∗

1, ∆
∗

2) · . . . · DP
Cr(∆∗

r , ∆
∗

r+1)

≤ (DP
S
max)

ℓ1 · . . . · (DP
S
max)

ℓr

= (DP
S
max)

ℓ

2

9. Using the previous questions, we obtain:

Pmax = (2−6)
(r−1)B

2
+1

So,

Pmax

r = 4 2−129

r = 6 2−251

r = 8 2−363

10. We have to enumerate the possiblities... The best solution is 4-1-4 and the branch number
is 8.

11. Let B′ the branch number of G, i.e. two rounds. There is B′ active s-boxes on each
two-rounds. So,

Pmax = (DP
S
max)

r

2
B′

12. B′ = 8. So,

Pmax

r = 4 2−96

r = 6 2−144

r = 8 2−192

3

2 Finding Collisions

1. As D is finite then after at most N = #D iteration of f , we must obtain some point twice.
Starting from this point the sequence is periodic.

2. For θ = λ, the point x is always λ steps ahead compared to y. Thus, in the loop we
eventually obtain f(x) = f(y) (more precisely, after µ iteration of the loop). The obtain
this collision, we perform µ+λ evaluation of f to obtain xµ+λ and µ to obtain xµ, so that
we perform 2µ + λ evaluations in total.

3. Algorithm 2 terminates when x = y, where y is the smallest value obtained in the sequence.
If the smallest value belongs to the tail of the sequence, the algorithm never reaches it
twice so that it loops forever. If this smallest value belongs to the cycle, the algorithms
stops. Among the µ+λ distinct values of the sequence, the probability that the algorithm
stops is thus p = λ

µ+λ
, as the smallest value is uniformly distributed.

4. Assuming that the algorithm terminates, the smallest value (which belongs to the cycle)
is on average at index λ

2 . Thus, the algorithm performs µ + λ + λ
2 = µ + 3

2λ iterations of
f before it reaches this value a second time.

5. Adding the number of iterations needed by both algorithms (and considering that we need
to run 1

p
instances of Algorithm 2 on average to obtain a collision), we get a total of

1

p
·

(

µ +
3

2
λ

)

+ 2µ + λ = 8 ·
√

πN/8

iterations of f to obtain a collision. The memory requirements of this method is negligible,
since it is Θ(log N).

6. The difference compared to the previous method is that we do not focus on one single
smallest value here. We have divided the space in k equivalence classes, and compute
the smallest value obtained for each of these k classes. As soon as one of these smallest
equivalence class values occurs twice, it is detected and the value of λ is returned. Con-
sequently, the algorithm terminates if at least one of the smallest values (among those
obtained for the different equivalence classes) belongs to the cycle. Considering that f
is uniformly distributed, so that the xi’s are mutually independent and uniformly dis-
tributed, each smallest equivalence class value belongs to the cycle with probability λ

µ+λ

and the algorithm terminates with probability

p′ = 1−

(

1−
λ

µ + λ

)k

.

7. We denote by S the number of smallest equivalence class values that belong to the cycle.
As we assumed being in the case where the algorithm succeeds, we know that at least one
smallest equivalence class value is on the cycle. Considering µ = λ, each other equivalence
class value is on the cycle with probability 1/2.

So, the probability that S = u for 0 < u ≤ k is equal to the probability that u− 1 values
(among the k − 1 remainings) are on the cycle. We have

Pr[S = u] = k ·

(

k − 1

u− 1

)

·
1

2k−1
.

4

8. We denote by L the number of evaluations of f . As we assume that the algorithm succeeds,
we have 0 < S ≤ k. As the expected value of L is equal to µ + λ + λ

u+1 when S = u, we
have

E(L) =
k

∑

u=1

(

µ + λ +
λ

u + 1

)

· Pr[S = u] = µ + λ + λ ·
k

∑

u=1

1

u + 1
· Pr[S = u].

Using the preivous question, we have

E(L) = µ + λ +
λ

2k − 1
·

k
∑

u=1

(

k
u

)

u + 1
= µ + λ +

λ

2k − 1
·

k
∑

u=1

(

k+1
u+1

)

k + 1
.

As
∑k

u=1

(

k+1
u+1

)

=
∑k+1

u=2

(

k+1
u

)

= 2k+1 − k − 2, We finally obtain

E(L) = µ + λ +
λ

k + 1

(

2−
k

2k − 1

)

.

9. From the previous question, we obtain that approximatively 2 ·
√

πN/8 are needed to find
λ. Adding the number of iterations needed by Algorithm 1 leads to the announced result.
This method has a space complexity equal to Θ(k · log(N)).

5

