Advanced Cryptography — Retake Exam

Serge Vaudenay

2.9.2008

1 On Orthomorphisms

Definition 1. Given a set Z of n elements,

- a Latin square is a $n \times n$ array of elements in Z such that each row and each column is a permutation of Z;
- two Latin squares A and B are orthogonal if for each $(a,b) \in \mathbb{Z}^2$ there exist indices i and j such that $A_{i,j} = a$ and $B_{i,j} = b$.

Given an (additively denoted) group G of order n,

- a Cayley table is a $n \times n$ array such that the first row and the first column are permutations of G and for each i and j we have $A_{i,j} = A_{i,1} + A_{1,j}$;
- an orthomorphism is a permutation σ over G such that $x \mapsto \sigma(x) x$ is also a permutation over G.

We consider a group G of order n and we take Z = G.

- 1. Show that a Cayley table is a Latin square.
- 2. Show that if σ is an orthomorphism and *A* is a Cayley table then the array *B* defined by $B_{i,j} = A_{i,1} + \sigma(A_{1,j})$ is a Latin square orthogonal to *A*.
- 3. Show that if *A* and *B* are two orthogonal Latin squares then there exists a unique function *f* over Z^2 such that $f(A_{i,1}, A_{1,j}) = (A_{i,j}, B_{i,j})$. Show that it is a multipermutation.
- 4. Show that if $G = (\{0,1\}^n)^2$ then $\sigma(a,b) = (b, a \oplus b)$ is an orthomorphism.

2 The Rabin Cryptosystem

Given $N = p \times q$ for two different large prime numbers p and q, we define $Enc_N(x) = x^2 \mod N$ over the \mathbb{Z}_N set.

- 1. Is \mathbf{Z}_N a permutation?
- 2. Assume that $p \mod 4 = q \mod 4 = 3$. Given y, give a formula to compute all x such that $Enc_N(x) = y$.
- 3. Show that given an oracle such that when queried with a random $y \in \mathbb{Z}_N$ it answers x such that $\text{Enc}_N(x) = y$ with probability ρ we can mount an algorithm to factor N with complexity $O(1/\rho)$.
- 4. Let R: {0,1}^ℓ → Z_N be an injective function, easy to evaluate and to invert, such that 2^ℓ ≪ N. We define Enc'_N(R(x)) = x² mod N from {0,1}^ℓ to Z_N. Show that we can invert Enc'_N with high probability when we know p and q. Does the algorithm of the previous question work?
- 5. Is Enc'_N semantically secure? Propose a construction.