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– all documents are allowed
– a pocket calculator is allowed
– communication devices are not allowed
– answers to the exercises must be provided on a separate sheet
– readability and style of writing will be part of the grade
– do not forget to put your name on the sheet!

1 A Distinguisher

We consider an oracle A which, upon a query x which is a vector of k bits, behaves as follows:

Input: x
1: compute the vector x̄ by flipping all bits of x
2: set u = x̄‖x
3: pick a random permutation σ over {1, 2, . . . , 2k}
4: apply transposition σ on u to get a vector v

namely, if u = u2k‖ · · · ‖u2‖u1 we have v = uσ(2k)‖ · · · ‖uσ(2)‖uσ(1)

5: set y to the k rightmost bits of v
Output: y

We denote y = A(x). (We stress that A(x) is a random variable.)

1. Given a random variable X we define its distribution function PX(x) = Pr[X = x]. Show
that for any x and y we have

PA(x)(y) =

(
k

k−w(y)

)
(

2k
k

)

where w(y) is the Hamming weight of y (i.e. the number of bits set to 1 in y). Deduce it
does not depend on x.
As an application, compute the table of PA(x) with k = 2.

2. Deduce the best advantage of a distinguisher limited to a single query x for distinguishing
A from a random oracle.
For k = 2, compute the advantage.

3. Given a function f : {0, 1}k → R we define its discrete Fourier transform

f̂(a) =
∑
x

(−1)a·xf(x)

Let r be the Hamming weight of the bitwise AND of a and x and let s be such that r + s
is the Hamming weight of x. Show that a · x can be expressed as a function in terms of r
and s. By grouping the x’s with same values of r and s in the sum, show that there is a
function g such that P̂A(x)(a) = g(w(a)).
Compute the table of P̂A(x) for k = 2.



To fix the bias, we consider the following oracle B.

Input: x
1: for i=1 to r do
2: query A(x) and get yi

3: end for
4: set y = y1 ⊕ · · · ⊕ yr

Output: y

Again, we denote B(x) the random output from x.

4. Given two independent random variables X and Y , show that

PX⊕Y (z) =
∑

x,y s.t. x⊕y=z

PX(x)PY (y)

Deduce that

PB(x)(y) =
∑

y1,...,yr s.t.
y1⊕···⊕yr=y

r∏

i=1

PA(x)(yi)

If we had to compute the table of PB(x) form this formula, what would be the complexity,
roughly? Is it doable for k = 10 and r = 10?

5. Show that for all a we have

P̂X⊕Y (a) = P̂X(a)× P̂Y (a)

i.e. the discrete Fourier transform of the distribution of X ⊕Y is obtained by multiplying
the discrete Fourier transforms of X and Y .
Deduce that

P̂B(x)(a) =
(
P̂A(x)(a)

)r

If we had to compute the table of P̂B(x) form this formula, what would be the complexity,
roughly? Is it doable for k = 10 and r = 10? How about k = 128 and r = 10?

6. For any function f : {0, 1}k → R such that
∑

x f(x) = 1, show that
∑
x

(
f(x)− 2−k

)2
= 2−k

∑

a 6=0

(
f̂(a)

)2

Hint: think about Parseval.
7. Deduce that the square Euclidean imbalance of B(x) is

SEI(B(x)) =
∑

a6=0

(
P̂A(x)(a)

)2r

Finally deduce that

SEI(B(x)) =
k∑

w=1

(
k

w

)
(g(w))2r

Is it feasible to compute it for k = 128 and r = 10?
8. Deduce an estimate on the number of samples to distinguish B(x) from a uniformly

distributed random variable.
9. As an application, compute this estimate for k = 2. How large r must be so that this is

higher than 280?



2 Σ-Protocol for Cubic Residues

We consider an integer n = p× q where p and q are two primes numbers, 3 divides p− 1 but
not q − 1.

1. Show that −3 is a quadratic residue modulo p.
2. Deduce that X2 + X + 1 has 2 roots in Zp.
3. Show that X3 − 1 has exactly 3 different roots in Zp.

Deduce that for all s ∈ Z∗p the polynomial X3− s has either no root or exactly 3 different
roots.

4. By using the Chinese remainder theorem, show that any element of Z∗n has either exactly
3 cubic roots or none. Those with cubic roots will be called cubic residues. We denote by
CRn the set of all cubic residues from Z∗n.

5. Inspire by the Fiat-Shamir Σ-protocol and propose a Σ-protocol for the relation

R((n, v), s)⇔ vs3 mod n = 1

Be careful to go through the check list which has been given in the course, describe all
components of the Σ-protocol and prove it satisfies the required properties.

3 The GQ Protocol

Σ-protocols are made with some components satisfying a list of requirements as explained in
the course. We consider here Σ-protocols with the extra property of uniqueness of response:
using the notations from the course, for each x, a, e, there exists a unique z such that the
verification V (x, a, e, z) holds.

1. Show that the Schnorr Σ-protocol provides uniqueness of response.

Let (N, e) be an RSA public key. We consider the following GQ protocol with relation

R((N, e, X), x)⇐⇒ xe mod N = X

Prover Verifier
witness: x input: (N, e,X)

pick y ∈ Z∗N pick c ∈ {0, 1, . . . , 2` − 1}
Y ← ye mod N

Y−−−−−−−−−−−−−→
c←−−−−−−−−−−−−−

z ← yxc mod N
z−−−−−−−−−−−−−→ ze ?≡ Y Xc (mod N)

Warning: in the GQ protocol, notations are somewhat different from usual.

2. Assuming that GQ is a Σ-protocol, formalize all components except the extractor.
3. Show (except special soundness) that all properties are satisfied.
4. Show that GQ provides response uniqueness.
5. When gcd(c1−c2, e) = 1, show that we can extract a witness from two transcripts (Y, c1, z1)

and (Y, c2, z2).
Hint: use the extended Euclid algorithm to find two integers a and b such that ae+ b(c1−
c2) = 1.

6. Deduce that we have an extractor which might fail sometimes. Estimate the probability
of failure for e = 65 537.


