Advanced Cryptography - Final Exam

Serge Vaudenay

16.6.2009

- all documents are allowed
- a pocket calculator is allowed
- communication devices are not allowed
- answers to the exercises must be provided on a separate sheet
- readability and style of writing will be part of the grade
- do not forget to put your name on the sheet!

1 A Distinguisher

We consider an oracle A which, upon a query x which is a vector of k bits, behaves as follows:
Input: x
: compute the vector \bar{x} by flipping all bits of x
set $u=\bar{x} \| x$
pick a random permutation σ over $\{1,2, \ldots, 2 k\}$
apply transposition σ on u to get a vector v
namely, if $u=u_{2 k}\|\cdots\| u_{2} \| u_{1}$ we have $v=u_{\sigma(2 k)}\|\cdots\| u_{\sigma(2)} \| u_{\sigma(1)}$
5: set y to the k rightmost bits of v

Output: y

We denote $y=A(x)$. (We stress that $A(x)$ is a random variable.)

1. Given a random variable X we define its distribution function $P_{X}(x)=\operatorname{Pr}[X=x]$. Show that for any x and y we have

$$
P_{A(x)}(y)=\frac{\binom{k}{k-w(y)}}{\binom{2 k}{k}}
$$

where $w(y)$ is the Hamming weight of y (i.e. the number of bits set to 1 in y). Deduce it does not depend on x.

Before permutation σ, the $2 k$-bit string u has a Hamming weight of k. After permutation σ, the obtained $2 k$-bit string v is a random string uniformly distributed among all those with Hamming weight k. We have to compute the probability that a random $2 k$-bit string v ends with the y half. For this, we count how many strings exist and we divide by the total number of possible strings. There are $\binom{2 k}{k}$ possible strings in total. To complete the v half to get a string with weight k, we have to pick a string of length k and weight $k-w(y)$. Clearly, we have $\binom{k}{k-w(y)}$. We deduce the formula for $P_{A(x)}(y)$ and we observe it does not depend on x and only depends on $w(y)$.

As an application, compute the table of $P_{A(x)}$ with $k=2$.

For $y=0$ we have $P_{A(x)}=\frac{1}{6}$, for $y=01$ and $y=10$, we have $P_{A(x)}=\frac{1}{3}$, for $y=11$, we have $P_{A(x)}=\frac{1}{6}$.
2. Deduce the best advantage of a distinguisher limited to a single query x for distinguishing A from a random oracle.

The best advantage is given by the statistical distance, so

$$
\operatorname{BestAdv}_{1}=\frac{1}{2} \sum_{y}\left|\frac{\binom{k}{k-w(y)}}{\binom{2 k}{k}}-2^{-k}\right|
$$

We can group the y 's by Hamming weight and obtain

$$
\operatorname{BestAdv}_{1}=\frac{1}{2} \sum_{w=0}^{k}\binom{k}{w}\left|\frac{\binom{k}{k-w}}{\binom{2 k}{k}}-2^{-k}\right|
$$

For $k=2$, compute the advantage.

We have

$$
\operatorname{BestAdv}_{1}=\frac{1}{2}\left(\left|\frac{1}{6}-\frac{1}{4}\right|+2\left|\frac{1}{3}-\frac{1}{4}\right|+\left|\frac{1}{6}-\frac{1}{4}\right|\right)=\frac{1}{6}
$$

which is pretty large. So, this construction introduces a significant bias.
3. Given a function $f:\{0,1\}^{k} \rightarrow \mathbf{R}$ we define its discrete Fourier transform

$$
\hat{f}(a)=\sum_{x}(-1)^{a \cdot x} f(x)
$$

Let r be the Hamming weight of the bitwise AND of a and x and let s be such that $r+s$ is the Hamming weight of x. Show that $a \cdot x$ can be expressed as a function in terms of r and s. By grouping the x 's with same values of r and s in the sum, show that there is a function g such that $\hat{P}_{A(x)}(a)=g(w(a))$.

We have $a \cdot x=r \bmod 2$. Since $P_{A(x)}(y)$ is a function of $w(y)$ then it is a function of $r+s$. The number of y 's given r and s is $\binom{w(a)}{r}\binom{k-w(a)}{s}$. We have

$$
\hat{P}_{A(x)}(a)=\sum_{y}(-1)^{a \cdot y} \frac{\binom{k}{k-w(y)}}{\binom{2 k}{k}}
$$

So,

$$
\hat{P}_{A(x)}(a)=\sum_{r=0}^{w(a)} \sum_{s=0}^{k-w(a)}\binom{w(a)}{r}\binom{k-w(a)}{s}(-1)^{r} \frac{\binom{k}{k-r-s}}{\binom{2 k}{k}}
$$

We thus have $\hat{P}_{A(x)}(a)=g(w(a))$ for

$$
g(w)=\sum_{r=0}^{w} \sum_{s=0}^{k-w}\binom{w}{r}\binom{k-w}{s}(-1)^{r} \frac{\binom{k}{k-r-s}}{\binom{2 k}{k}}
$$

Compute the table of $\hat{P}_{A(x)}$ for $k=2$.

$$
\text { For } a=0 \text { we have } \hat{P}_{A(x)}=g(0)=1, \text { for } a=01 \text { and } a=10 \text {, we have } \hat{P}_{A(x)}=g(1)=
$$ 0 , for $a=11$, we have $\hat{P}_{A(x)}=g(2)=-\frac{1}{3}$.

To fix the bias, we consider the following oracle B.
Input: x
: for $\mathrm{i}=1$ to r do query $A(x)$ and get y_{i}
end for
: set $y=y_{1} \oplus \cdots \oplus y_{r}$
Output: y
Again, we denote $B(x)$ the random output from x.
4. Given two independent random variables X and Y, show that

$$
P_{X \oplus Y}(z)=\sum_{x, y \text { s.t. } x \oplus y=z} P_{X}(x) P_{Y}(y)
$$

By definition we have

$$
P_{X \oplus Y}(z)=\operatorname{Pr}[X \oplus Y=z]=\sum_{x, y \text { s.t. } x \oplus y=z} \operatorname{Pr}[X=x \text { and } Y=y]
$$

and since X and Y are independent we obtain the announced result.
Deduce that

$$
P_{B(x)}(y)=\sum_{\substack{y_{1}, \ldots, y_{r} \text { s.t. } \\ y_{1} \oplus \cdots \oplus y_{r}=y}} \prod_{i=1}^{r} P_{A(x)}\left(y_{i}\right)
$$

We prove it by induction on r. Clearly, it is true for $r=1$. If it is true for $r-1$ we prove it for r by letting X be the XOR of the $r-1$ first y_{i} 's and Y be the last y_{r}.

If we had to compute the table of $P_{B(x)}$ form this formula, what would be the complexity, roughly? Is it doable for $k=10$ and $r=10$?

$$
\text { We would have to sum } 2^{k(r-1)} \text { terms. For } k=10 \text { and } r=10 \text { this would be infeasible. }
$$

5. Show that for all a we have

$$
\hat{P}_{X \oplus Y}(a)=\hat{P}_{X}(a) \times \hat{P}_{Y}(a)
$$

i.e. the discrete Fourier transform of the distribution of $X \oplus Y$ is obtained by multiplying the discrete Fourier transforms of X and Y.

We have

$$
\hat{P}_{X \oplus Y}(a)=\sum_{z}(-1)^{a \cdot z} P_{X \oplus Y}(z)=\sum_{z}(-1)^{a \cdot z} \sum_{x, y \text { s.t. } x \oplus y=z} P_{X}(x) P_{Y}(y)
$$

We rewrite it into

$$
\hat{P}_{X \oplus Y}(a)=\sum_{z} \sum_{x, y \text { s.t. } x \oplus y=z}(-1)^{a \cdot x} P_{X}(x)(-1)^{a \cdot y} P_{Y}(y)
$$

Since z does not appear anymore, the inner sum finally sums over all x and y. We obtain

$$
\hat{P}_{X \oplus Y}(a)=\sum_{x, y}(-1)^{a \cdot x} P_{X}(x)(-1)^{a \cdot y} P_{Y}(y)
$$

which clearly factors into $\hat{P}_{X}(a) \hat{P}_{Y}(a)$.
Deduce that

$$
\hat{P}_{B(x)}(a)=\left(\hat{P}_{A(x)}(a)\right)^{r}
$$

```
Again, this is proven by induction on r.
```

If we had to compute the table of $\hat{P}_{B(x)}$ form this formula, what would be the complexity, roughly? Is it doable for $k=10$ and $r=10$? How about $k=128$ and $r=10$?

We would have to compute the table of $\hat{P}_{A(x)}$ and to raise its 2^{k} terms to the power r. There are efficient algorithms to compute the discrete Fourier transform. For $k=10$ and $r=10$ this would be easy. For $k=128$ we cannot even store the table so it would be impossible.
6. For any function $f:\{0,1\}^{k} \rightarrow \mathbf{R}$ such that $\sum_{x} f(x)=1$, show that

$$
\sum_{x}\left(f(x)-2^{-k}\right)^{2}=2^{-k} \sum_{a \neq 0}(\hat{f}(a))^{2}
$$

Hint: think about Parseval.

By expanding the left-hand side we obtain

$$
\sum_{x} f(x)^{2}-2^{-k}
$$

We notice that $\hat{f}(a)=\sum_{x} f(x)=1$, so the equation is equivalent to

$$
\sum_{x} f(x)^{2}=2^{-k} \sum_{a}(\hat{f}(a))^{2}
$$

To prove it, we start by the right-hand side sum. We have

$$
\sum_{a}(\hat{f}(a))^{2}=\sum_{a} \sum_{x} \sum_{y}(-1)^{a \cdot(x \oplus y)} f(x) f(y)
$$

We swap the sums and obtain

$$
\sum_{a}(\hat{f}(a))^{2}=\sum_{x} \sum_{y} f(x) f(y) \sum_{a}(-1)^{a \cdot(x \oplus y)}
$$

The inner sum is always 0 when $x \neq y$ and equals 2^{k} otherwise. Hence,

$$
\sum_{a}(\hat{f}(a))^{2}=2^{k} \sum_{x} f(x)^{2}
$$

which is what we wanted to prove.
7. Deduce that the square Euclidean imbalance of $B(x)$ is

$$
\operatorname{SEI}(B(x))=\sum_{a \neq 0}\left(\hat{P}_{A(x)}(a)\right)^{2 r}
$$

By definition, we have

$$
\operatorname{SEI}(B(x))=2^{k} \sum_{y}\left(P_{B(x)}(y)-2^{-k}\right)^{2}
$$

Thanks to the previous question, we obtain

$$
\operatorname{SEI}(B(x))=\sum_{a \neq 0}\left(\hat{P}_{B(x)}(a)\right)^{2}
$$

We conclude be recalling our previous result $\hat{P}_{B(x)}(a)=\left(\hat{P}_{A(x)}(a)\right)^{r}$.
Finally deduce that

$$
\operatorname{SEI}(B(x))=\sum_{w=1}^{k}\binom{k}{w}(g(w))^{2 r}
$$

Is it feasible to compute it for $k=128$ and $r=10 ?$

In the previous equation we just group all a's by their Hamming weight w and recall $\hat{P}_{A(x)}(a)=g(w(a))$. To compute it we first have to make the table of g which is a double sum with at most k terms in each sum so we have less than k^{2} terms to sum. Then, the above sum is over k terms, so this is easy to compute.
8. Deduce an estimate on the number of samples to distinguish $B(x)$ from a uniformly distributed random variable.

The number of sample is within the order of magnitude of the inverse of the Chernoff information which is roughly the SEI over $8 \ln 2$. Hence, the number of sample is

$$
q \approx \frac{8 \ln 2}{\sum_{w=1}^{k}\binom{k}{w}(g(w))^{2 r}}
$$

9. As an application, compute this estimate for $k=2$. How large r must be so that this is higher than 2^{80} ?

$$
\begin{aligned}
& \text { We have seen that } g(1)=0 \text { and } g(2)=-\frac{1}{3} \text {. Hence, } q \approx 8 \ln 2 \times 9^{r} \text {. We need } r \geq 24 \\
& \text { to have } q \geq 2^{80} \text {. }
\end{aligned}
$$

$2 \boldsymbol{\Sigma}$-Protocol for Cubic Residues

We consider an integer $n=p \times q$ where p and q are two primes numbers, 3 divides $p-1$ but not $q-1$.

1. Show that -3 is a quadratic residue modulo p.

We use the properties of the Jacobi symbol. We have $\binom{-3}{p}=\binom{p}{-3}=\binom{1}{-3}=+1$ so -3 is a quadratic residue modulo p.
2. Deduce that $X^{2}+X+1$ has 2 roots in \mathbf{Z}_{p}.

The discriminant of $X^{2}+X+1$ is -3 . Let $-3 \equiv u^{2} \quad(\bmod p)$. Therefore, $X^{2}+X+1$ has two square roots $(-1 \pm u) / 2 \bmod p$.
Alternately, we have $X^{2}+X+1=\left(X+\frac{1}{2}\right)^{2}-\frac{u^{2}}{4}=\left(X-\frac{-1+u}{2}\right)\left(X+\frac{-1-u}{2}\right)$ from which we deduce the two roots.
3. Show that $X^{3}-1$ has exactly 3 different roots in \mathbf{Z}_{p}.

The polynomial $X^{3}-1$ cannot have more than 3 roots over the field \mathbf{Z}_{p}. Multiple roots must be roots of its derivative $3 X^{2}$ which has only 0 as a root. So, $X^{3}-s$ has no multiple roots when $s \in \mathbf{Z}_{p}^{*}$. The polynomial $X^{3}-1$ has root 1 and the roots of $X^{2}+X+1$. So, $X^{3}-1$ has exactly 3 roots.

Deduce that for all $s \in \mathbf{Z}_{p}^{*}$ the polynomial $X^{3}-s$ has either no root or exactly 3 different roots.

We know it cannot have more than 3 roots. Assume it has one root θ. Let $1, \zeta, \zeta^{\prime}$ be the 3 roots of $X^{3}-1$. We observe that $\theta, \theta \zeta, \theta \zeta^{\prime}$ are 3 different roots of $X^{3}-s$. So we have exactly 3 different roots.
4. By using the Chinese remainder theorem, show that any element of \mathbf{Z}_{n}^{*} has either exactly 3 cubic roots or none. Those with cubic roots will be called cubic residues. We denote by $C R_{n}$ the set of all cubic residues from \mathbf{Z}_{n}^{*}.

A number x is a cubic root of s modulo n iff it is a cubic root modulo p and modulo q. Since 3 is coprime with $\varphi(q)$, every residue has a unique cubic root modulo q. Hence, by using the Chinese remainder theorem we obtain that a number always has the same number of cubic roots modulo n and modulo p.
5. Inspire by the Fiat-Shamir Σ-protocol and propose a Σ-protocol for the relation

$$
R((n, v), s) \Leftrightarrow v s^{3} \bmod n=1
$$

Be careful to go through the check list which has been given in the course, describe all components of the Σ-protocol and prove it satisfies the required properties.

We propose

By going through the checklist, we define:

- the relation R is already defined
- the first prover function $\mathcal{P}(n, v ; r)=r^{3} \bmod n$
- the challenge domain $E=\{0,1\}$
- the second prover function $\mathcal{P}(n, v, e ; r)=r s^{e} \bmod n$
- the verification function $V(n, v, x, e, y) \Longleftrightarrow y^{3} v^{e} \bmod n=x$
- the extractor algorithm $\mathcal{E}\left(n, v, x, e, y, e^{\prime}, y^{\prime}\right)$: since e and e^{\prime} are different in $\{0,1\}$ we denote y_{0} resp. y_{1} the y or y^{\prime} value corresponding to the challenge 0 resp. 1. We compute $z=y_{1} / y_{0} \bmod n$.
- the simulator algorithm $\mathcal{S}(n, v, e ; r):$ pick $y \in_{U} \mathbf{Z}_{n}^{*}$ form r and set $x=y^{3} v^{e} \bmod$ n.
We can now prove all required properties:
- (efficiency) all algorithms are polynomially bounded
- (completeness) for each $((n, v), s)$ in the language and a honestly generated transcript (x, e, y) then $V(n, v, x, e, y)$ holds.
- (special soundness) for each (n, v), if (x, e, y) and $\left(x, e^{\prime}, y^{\prime}\right)$ are two accepting transcripts with same x, then \mathcal{E} produces a witness. This comes from

$$
\left(\frac{y_{1}}{y_{0}}\right)^{3} v \equiv \frac{y_{1}^{3} v}{y_{0}^{3}} \equiv \frac{x}{x} \equiv 1 \quad(\bmod n)
$$

- (honest verifier zero-knowledge) for a honest prover, y is always uniformly distributed (whatever e) and $x=y^{3} v^{e} \bmod n$. For the simulator, this is the same. So, both transcripts have same distribution.

3 The GQ Protocol

Σ-protocols are made with some components satisfying a list of requirements as explained in the course. We consider here Σ-protocols with the extra property of uniqueness of response: using the notations from the course, for each x, a, e, there exists a unique z such that the verification $V(x, a, e, z)$ holds.

1. Show that the Schnorr Σ-protocol provides uniqueness of response.

In the Schnorr protocol we have $r y^{e}=g^{s}$ in the group so the response s is the unique integer in \mathbf{Z}_{q} such that $g^{s}=r y^{e}$.

Let (N, e) be an RSA public key. We consider the following GQ protocol with relation

$$
R((N, e, X), x) \Longleftrightarrow x^{e} \bmod N=X
$$

Prover
witness: x

input: (N, e, X)

$Y \leftarrow y^{e} \bmod N \neq \mathbf{Z}_{N}^{*}$ pick $c \in\left\{0,1, \ldots, 2^{\ell}-1\right\}$

Warning: in the GQ protocol, notations are somewhat different from usual.
2. Assuming that GQ is a Σ-protocol, formalize all components except the extractor.

By going through the checklist, we define:

- the relation R is already defined
- the first prover function $\mathcal{P}(N, e ; r)$ generates y form r and output $Y=y^{e} \bmod N$
- the challenge domain $E=\left\{0,1, \ldots, 2^{\ell}-1\right\}$
- the second prover function $\mathcal{P}(N, e, c ; r)$ computes y as before and $z=y x^{c} \bmod N$
- the verification function $V(N, e, Y, c, z) \Longleftrightarrow z^{e} \equiv Y X^{c} \quad(\bmod N)$
- the extractor algorithm $\mathcal{E}\left(N, e, Y, c, z, c^{\prime}, z^{\prime}\right)$ is not asked in this question
- the simulator algorithm $\mathcal{S}(N, e, c ; r)$: pick $z \in_{U} \mathbf{Z}_{N}^{*}$ form r and set $Y=z^{e} / X^{c}$ $(\bmod N)$

3. Show (except special soundness) that all properties are satisfied.

We can now prove all required properties:

- (efficiency) all algorithms are polynomially bounded
- (completeness) for each $((N, e), x)$ in the language and a honestly generated tran$\operatorname{script}(Y, c, z)$ then $V(N, e, Y, c, z)$ holds.
- (special soundness) not asked in this question
- (honest verifier zero-knowledge) for a honest prover, z is always uniformly distributed $($ whatever $c)$ and $Y=z^{e} / X^{c}(\bmod N)$. For the simulator, this is the same. So, both transcripts have same distribution.

4. Show that GQ provides response uniqueness.

The response z must satisfy $z^{e} \equiv Y X^{c}(\bmod N)$. Since (N, e) is a valid $R S A$ key, there exists a secret key d and by raising the equation to the power d we have $z=Y^{d} X^{d c} \quad(\bmod N)$, so z is unique.
5. When $\operatorname{gcd}\left(c_{1}-c_{2}, e\right)=1$, show that we can extract a witness from two transcripts $\left(Y, c_{1}, z_{1}\right)$ and $\left(Y, c_{2}, z_{2}\right)$.
Hint: use the extended Euclid algorithm to find two integers a and b such that $a e+b\left(c_{1}-\right.$ $\left.c_{2}\right)=1$.

Let a and b from the extended Euclid algorithm be such that $a e+b\left(c_{1}-c_{2}\right)=1$. We have $z_{1}^{e} \equiv Y X^{c_{1}}$
satisfies $X \equiv x^{e}$.
6. Deduce that we have an extractor which might fail sometimes. Estimate the probability of failure for $e=65537$.

When getting two transcripts with same Y the extractor $\mathcal{E}\left(N, e, Y, c, z, c^{\prime}, z^{\prime}\right)$ works by taking $X^{a} \frac{z_{1}^{b}}{z_{2}^{b}} \bmod N$ as above. It fails in the extended Euclid algorithm if $\operatorname{gcd}\left(c_{1}-\right.$ $\left.c_{2}, e\right) \neq 1$. For e prime, this is equivalent to e divides $c_{1}-c_{2}$. For ℓ large and $e=65537$, which is prime, the probability of this event is roughly $1 / e$, which is small.

