Advanced Cryptography — Final Exam

Serge Vaudenay

16.6.2009

— all documents are allowed

— a pocket calculator is allowed

— communication devices are not allowed

— answers to the exercises must be provided on a separate sheet
— readability and style of writing will be part of the grade

— do not forget to put your name on the sheet!

1 A Distinguisher

We consider an oracle A which, upon a query x which is a vector of k bits, behaves as follows:

Input: z
1: compute the vector Z by flipping all bits of x
2: set u = Z||z
3: pick a random permutation o over {1,2,...,2k}
4: apply transposition o on u to get a vector v

namely, if u = ugg| - - - [|Juallur we have v = ugap) || - - - [t 2)l|Us)
5: set y to the k rightmost bits of v
Output: y

We denote y = A(x). (We stress that A(z) is a random variable.)

1. Given a random variable X we define its distribution function Px(x) = Pr[X = z|. Show
that for any = and y we have
k
(k—w(y))

2k
(%)
where w(y) is the Hamming weight of y (i.e. the number of bits set to 1 in y). Deduce it
does not depend on z.

Before permutation o, the 2k-bit string u has a Hamming weight of k. After permu-
tation o, the obtained 2k-bit string v is a random string uniformly distributed among
all those with Hamming weight k. We have to compute the probability that a random
2k-bit string v ends with the y half. For this, we count how many strings exist and,

we divide by the total number of possible strings. There are (2:) possible strings in
total. To complete the v half to get a string with weight k, we have to pick a string
of length k and weight k — w(y). Clearly, we have (k—i(y))' We deduce the formula
for Pa(z)(y) and we observe it does not depend on x and only depends on w(y).

As an application, compute the table of Py, with k = 2.



Fory =0 we have Py, = %, Jory =01 andy = 10, we have Py, = %, fory =11,

we have Py = %.

2. Deduce the best advantage of a distinguisher limited to a single query x for distinguishing
A from a random oracle.

The best advantage is given by the statistical distance, so

(k—f)(y)) _ ok
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We can group the y’s by Hamming weight and obtain
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For k = 2, compute the advantage.

We have

1 1 1 1 1 1 1 1
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which is pretty large. So, this construction introduces a significant bias.

3. Given a function f: {0,1}* — R we define its discrete Fourier transform

fla) = (-1)*"f(x)

T

Let r be the Hamming weight of the bitwise AND of ¢ and = and let s be such that r + s
is the Hamming weight of x. Show that a - x can be expressed as a function in terms of r
and s. By grouping the x’s with same values of r and s in the sum, show that there is a
function g such that PA(I)(a) = g(w(a)).



We have a - x = r mod 2. Since Py (y) is a function of w(y) then it is a function

of r + s. The number of y’s given r and s is (w&a)) (k_lsu(a)). We have

k
PA(J;)(CL) = Z(_l)a‘yw
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We thus have PA(x)(a) = g(w(a)) for

D-EECIC)r

s=0

Compute the table of pA(r) for k = 2.

For a =0 we have Py, ) = 9(0) 01 and a = 10, we have Py(y) = g(1) =

1, for
) =

= rTa =
0, for a =11, we have PA(I) =g(2 %

To fix the bias, we consider the following oracle B.

Input: x
1: for i=1 to r do
2:  query A(x) and get y;
3: end for
4:sety=y1 S --- Dy,
Output: y

Again, we denote B(z) the random output from z.

4. Given two independent random variables X and Y, show that

Pxgy(z)= Y,  Px(z)Py(y)
x,y s.t. TDy==z

By definition we have

Pxoy(z) =Pr[X@Y =2] = >  Pr[X=zandY =y

z,y s.t. Dy==z

and since X andY are independent we obtain the announced result.

Deduce that

YL seens yr s.t. =1
Y19 Dyr=vy



We prove it by induction on r. Clearly, it is true for r = 1. If it is true for r — 1 we
prove it for r by letting X be the XOR of the r — 1 first y;’s and Y be the last y,.

If we had to compute the table of Ppg(,) form this formula, what would be the complexity,
roughly? Is it doable for kK = 10 and r = 107

We would have to sum 25— terms. For k = 10 and r = 10 this would be infeasible.‘

. Show that for all @ we have
Pxgy(a) = Px(a) x Py(a)

i.e. the discrete Fourier transform of the distribution of X @Y is obtained by multiplying
the discrete Fourier transforms of X and Y.

We have
Pxay(a) =Y (=1)"*Pxay(2) = Y _(-1)** > Px (z) Py (y)

z z x,y s.t. xPy==z

We rewrite it into

Pxay(@ =3 > (=1)"Px()(~1)"Py(y)

z x,y st. xDy==z

Since z does not appear anymore, the inner sum finally sums over all x and y. We
obtain
Pxey(a) =) (=1)*"Px(a)(=1)* Py (y)
l’7y

A

which clearly factors into Px(a)Py(a).

Deduce that R R ,
PB(J?) ((L) = (PA(x) (a)>

’Again, this is proven by induction on 7.

If we had to compute the table of PB(,J) form this formula, what would be the complexity,
roughly? Is it doable for £ = 10 and r = 107 How about k£ = 128 and r = 107

We would have to compute the table of Py, and to raise its 2F terms to the power .
There are efficient algorithms to compute the discrete Fourier transform. For k = 10
and r = 10 this would be easy. For k = 128 we cannot even store the table so it would
be impossible.

. For any function f: {0,1}* — R such that ", f(z) = 1, show that
2 ~N2
S (f@)—27F) =27% 3 (f(a)
T a#0
Hint: think about Parseval.



By expanding the left-hand side we obtain
> fla)? 27
We notice that f(a) =Y, f(x) = 1, so the equation is equivalent to
S i =2y (fa)
To prove it, we start by the right-hand side sum. We have

§( a))’ =233 1)) £ () £ (y)

We swap the sums and obtain

2 <f<a))2 =" f@)fy) Y (—1r ey
a T y

a

The inner sum is always 0 when x # vy and equals 2% otherwise. Hence,
. 2
> (f@) =23 f@

which is what we wanted to prove.

7. Deduce that the square Euclidean imbalance of B(x) is

SEI(B(x)) = > (P )

a#0

By definition, we have

2
SEI(B 23" (Powy () - 27F)
y
Thanks to the previous question, we obtain

SEI(B(x)) = Y. (Ppa )2

a#0

We conclude be recalling our previous result PB(x)(a) = (PA(x) (a))T.

Finally deduce that
"ok

SEI(B(z)) = g::l ( ) (g(w))*

Is it feasible to compute it for £k = 128 and r = 107

w



In the previous equation we just group all a’s by their Hamming weight w and recall
PA(z) (a) = g(w(a)). To compute it we first have to make the table of g which is a
double sum with at most k terms in each sum so we have less than k? terms to sum.
Then, the above sum is over k terms, so this is easy to compute.

8. Deduce an estimate on the number of samples to distinguish B(z) from a uniformly
distributed random variable.

The number of sample is within the order of magnitude of the inverse of the Chernoff]
information which is roughly the SEI over 8In2. Hence, the number of sample is

8ln2
ber () (9w

9. As an application, compute this estimate for kK = 2. How large r must be so that this is
higher than 2807

We have seen that g(1) = 0 and g(2) = —3. Hence, ¢ ~8In2 x 9". We need r > 24
280,

to have ¢ >

2 3 -Protocol for Cubic Residues

We consider an integer n = p X ¢ where p and ¢ are two primes numbers, 3 divides p — 1 but
not ¢ — 1.

1. Show that —3 is a quadratic residue modulo p.

We use the properties of the Jacobi symbol. We have (;3) = (_273) = (_3) =+1
so —3 s a quadratic residue modulo p.

2. Deduce that X2 + X + 1 has 2 roots in Z,.

The discriminant of X?>+X +1 is —3. Let =3 = u®> (mod p). Therefore, X?+ X +1
has two square roots (—1 £ u)/2 mod p.

Alternately, we have X? + X +1 = (X + $)? — 72—2 = (X — LBy (X + =54 from
which we deduce the two roots.

3. Show that X3 — 1 has exactly 3 different roots in Z,.

The polynomial X> — 1 cannot have more than 3 roots over the field Z,,. Multiple
roots must be roots of its derivative 3X? which has only 0 as a root. So, X> — s has
no multiple roots when s € Zy,. The polynomial X3 — 1 has root 1 and the roots of]
X2+ X +1. So, X3 —1 has exactly 3 roots.

Deduce that for all s € Z) the polynomial X 3 — 5 has either no root or exactly 3 different
roots.



We know it cannot have more than 3 roots. Assume it has one root 0. Let 1,(,(’ be
the 8 roots of X3 — 1. We observe that 0,0(,0(" are 3 different roots of X — s. So
we have exactly 8 different roots.

4. By using the Chinese remainder theorem, show that any element of Z; has either exactly
3 cubic roots or none. Those with cubic roots will be called cubic residues. We denote by
CR,, the set of all cubic residues from Zy.

A number x is a cubic root of s modulo n iff it is a cubic root modulo p and modulo
q. Since 8 is coprime with ¢(q), every residue has a unique cubic root modulo q.
Hence, by using the Chinese remainder theorem we obtain that a number always has
the same number of cubic roots modulo n and modulo p.

5. Inspire by the Fiat-Shamir X-protocol and propose a X-protocol for the relation

R((n,v),s) < vs> mod n = 1

Be careful to go through the check list which has been given in the course, describe all
components of the Y-protocol and prove it satisfies the required properties.



We propose

Prover Verifier
witness: s input: (n,v)
pick r € Z, pick e € {0,1}

xT

x =73 modn
[

Y

R
y=rs®modn y3v® mod n = x

By going through the checklist, we define:

— the relation R is already defined

— the first prover function P(n,v;r) = r mod n

— the challenge domain E = {0,1}

— the second prover function P(n,v,e;r) =rs® mod n

— the verification function V(n,v,z,e,y) <= y3v° mod n = z

— the extractor algorithm E(n,v,x,e,y,€,y'): since e and €' are different in {0,1}
we denote yy resp. y1 the y or y wvalue corresponding to the challenge 0 resp. 1.
We compute z = y1/yo mod n.

— the simulator algorithm S(n,v,e;r): pick y €y Z¥, form r and set x = y>v® mod
n.

We can now prove all required properties:

— (efficiency) all algorithms are polynomially bounded

— (completeness) for each ((n,v),s) in the language and a honestly generated tran-
script (x,e,y) then V(n,v,x,e,y) holds.

— (special soundness) for each (n,v), if (x,e,y) and (x,€,y’) are two accepting
transcripts with same x, then € produces a witness. This comes from

3 3
(y1> v=A0 =T (mod n)
Yo

— (honest verifier zero-knowledge) for a honest prover, y is always uniformly dis-
tributed (whatever e) and x = y3v® mod n. For the simulator, this is the same.
So, both transcripts have same distribution.

3 The GQ Protocol

X-protocols are made with some components satisfying a list of requirements as explained in
the course. We consider here Y-protocols with the extra property of uniqueness of response:
using the notations from the course, for each z, a, e, there exists a unique z such that the
verification V (z, a, e, z) holds.

1. Show that the Schnorr X-protocol provides uniqueness of response.

In the Schnorr protocol we have ry® = g° in the group so the response s is the unique
integer in Zg such that g° = ry°.




Let (N, e) be an RSA public key. We consider the following GQ protocol with relation
R((N,e,X),z) <= z°mod N = X

Prover Verifier
witness: x  input: (N, e, X)

pick y € Z% pick c € {0,1,...,2¢ — 1}
Y «— y*mod N Y
C
z «— yz® mod N £ PESPG (mod N)

Warning: in the GQ protocol, notations are somewhat different from usual.

2. Assuming that GQ is a X-protocol, formalize all components except the extractor.

By going through the checklist, we define:

— the relation R is already defined

— the first prover function P(N,e;r) generates y form r and output Y = y° mod N

— the challenge domain E = {0,1,...,2¢ -1}

— the second prover function P(N,e,c;r) computes y as before and z = yx© mod N

— the verification function V(N,e,Y,c,z) <= 2 =Y X¢ (mod N)

— the extractor algorithm E(N,e,Y,c,z,c,2') is not asked in this question

— the simulator algorithm S(N,e,c;r): pick z €y Zy form r and set Y = 2¢/X¢
(mod N)

3. Show (except special soundness) that all properties are satisfied.

We can now prove all required properties:

— (efficiency) all algorithms are polynomially bounded

— (completeness) for each ((N,e),z) in the language and a honestly generated tran-
script (Y, ¢, z) then V(N,e,Y, ¢, z) holds.

— (special soundness) not asked in this question

— (honest verifier zero-knowledge) for a honest prover, z is always uniformly dis-
tributed (whatever ¢) and Y = 2¢/X¢ (mod N). For the simulator, this is the
same. So, both transcripts have same distribution.

4. Show that GQ provides response uniqueness.

The response z must satisfy z¢ = YX¢ (mod N). Since (N,e) is a valid RSA
key, there exists a secret key d and by raising the equation to the power d we have
z=Y%X9 (mod N), so z is unique.

5. When gcd(c1 —c2,€) = 1, show that we can extract a witness from two transcripts (Y, c1, 21)
and (Y, co, 22).
Hint: use the extended Euclid algorithm to find two integers a and b such that ae + b(c; —
CQ) =1.



Let a and b from the extended Euclid algorithm be such that ae +b(cy —cg) = 1. We

b vbe Zbe Zb
have 2{ =YX and 2§ =Y X so X = Xoee X2 XL = xaei 5o p = X% mod N
YPXPe2 2o¢ z5

2
satisfies X = x°.

6. Deduce that we have an extractor which might fail sometimes. Estimate the probability

of failure for e = 65 537.

When getting two transcripts with same Y the extractor E(N,e,Y,c,z,c,2") works
by taking X3 %+ mod N as above. It fails in the extended Euclid algorithm if gcd(c1 —

ca,€e) # 1. For e prime, this is equivalent to e divides ¢ — ca3. For £ large and
= 65537, which is prime, the probability of this event is roughly 1/e, which is

small.




