
Advanced Cryptography — Final Exam

Serge Vaudenay

16.6.2009

– all documents are allowed
– a pocket calculator is allowed
– communication devices are not allowed
– answers to the exercises must be provided on a separate sheet
– readability and style of writing will be part of the grade
– do not forget to put your name on the sheet!

1 A Distinguisher

We consider an oracle A which, upon a query x which is a vector of k bits, behaves as follows:

Input: x
1: compute the vector x̄ by flipping all bits of x
2: set u = x̄‖x
3: pick a random permutation σ over {1, 2, . . . , 2k}
4: apply transposition σ on u to get a vector v

namely, if u = u2k‖ · · · ‖u2‖u1 we have v = uσ(2k)‖ · · · ‖uσ(2)‖uσ(1)

5: set y to the k rightmost bits of v
Output: y

We denote y = A(x). (We stress that A(x) is a random variable.)

1. Given a random variable X we define its distribution function PX(x) = Pr[X = x]. Show
that for any x and y we have

PA(x)(y) =

(
k

k−w(y)

)
(

2k
k

)

where w(y) is the Hamming weight of y (i.e. the number of bits set to 1 in y). Deduce it
does not depend on x.

Before permutation σ, the 2k-bit string u has a Hamming weight of k. After permu-
tation σ, the obtained 2k-bit string v is a random string uniformly distributed among
all those with Hamming weight k. We have to compute the probability that a random
2k-bit string v ends with the y half. For this, we count how many strings exist and
we divide by the total number of possible strings. There are

(
2k
k

)
possible strings in

total. To complete the v half to get a string with weight k, we have to pick a string
of length k and weight k−w(y). Clearly, we have

(
k

k−w(y)

)
. We deduce the formula

for PA(x)(y) and we observe it does not depend on x and only depends on w(y).

As an application, compute the table of PA(x) with k = 2.



For y = 0 we have PA(x) = 1
6 , for y = 01 and y = 10, we have PA(x) = 1

3 , for y = 11,
we have PA(x) = 1

6 .

2. Deduce the best advantage of a distinguisher limited to a single query x for distinguishing
A from a random oracle.

The best advantage is given by the statistical distance, so

BestAdv1 =
1
2

∑
y

∣∣∣∣∣∣

(
k

k−w(y)

)
(

2k
k

) − 2−k

∣∣∣∣∣∣

We can group the y’s by Hamming weight and obtain

BestAdv1 =
1
2

k∑

w=0

(
k

w

) ∣∣∣∣∣∣

(
k

k−w

)
(

2k
k

) − 2−k

∣∣∣∣∣∣

For k = 2, compute the advantage.

We have
BestAdv1 =

1
2

(∣∣∣∣
1
6
− 1

4

∣∣∣∣ + 2
∣∣∣∣
1
3
− 1

4

∣∣∣∣ +
∣∣∣∣
1
6
− 1

4

∣∣∣∣
)

=
1
6

which is pretty large. So, this construction introduces a significant bias.

3. Given a function f : {0, 1}k → R we define its discrete Fourier transform

f̂(a) =
∑
x

(−1)a·xf(x)

Let r be the Hamming weight of the bitwise AND of a and x and let s be such that r + s
is the Hamming weight of x. Show that a · x can be expressed as a function in terms of r
and s. By grouping the x’s with same values of r and s in the sum, show that there is a
function g such that P̂A(x)(a) = g(w(a)).



We have a · x = r mod 2. Since PA(x)(y) is a function of w(y) then it is a function

of r + s. The number of y’s given r and s is
(

w(a)
r

) (
k−w(a)

s

)
. We have

P̂A(x)(a) =
∑
y

(−1)a·y

(
k

k−w(y)

)
(

2k
k

)

So,

P̂A(x)(a) =
w(a)∑

r=0

k−w(a)∑

s=0

(
w(a)

r

) (
k − w(a)

s

)
(−1)r

(
k

k−r−s

)
(

2k
k

)

We thus have P̂A(x)(a) = g(w(a)) for

g(w) =
w∑

r=0

k−w∑

s=0

(
w

r

) (
k − w

s

)
(−1)r

(
k

k−r−s

)
(

2k
k

)

Compute the table of P̂A(x) for k = 2.

For a = 0 we have P̂A(x) = g(0) = 1, for a = 01 and a = 10, we have P̂A(x) = g(1) =
0, for a = 11, we have P̂A(x) = g(2) = −1

3 .

To fix the bias, we consider the following oracle B.

Input: x
1: for i=1 to r do
2: query A(x) and get yi

3: end for
4: set y = y1 ⊕ · · · ⊕ yr

Output: y

Again, we denote B(x) the random output from x.

4. Given two independent random variables X and Y , show that

PX⊕Y (z) =
∑

x,y s.t. x⊕y=z

PX(x)PY (y)

By definition we have

PX⊕Y (z) = Pr[X ⊕ Y = z] =
∑

x,y s.t. x⊕y=z

Pr[X = x and Y = y]

and since X and Y are independent we obtain the announced result.

Deduce that

PB(x)(y) =
∑

y1,...,yr s.t.
y1⊕···⊕yr=y

r∏

i=1

PA(x)(yi)



We prove it by induction on r. Clearly, it is true for r = 1. If it is true for r− 1 we
prove it for r by letting X be the XOR of the r − 1 first yi’s and Y be the last yr.

If we had to compute the table of PB(x) form this formula, what would be the complexity,
roughly? Is it doable for k = 10 and r = 10?

We would have to sum 2k(r−1) terms. For k = 10 and r = 10 this would be infeasible.

5. Show that for all a we have

P̂X⊕Y (a) = P̂X(a)× P̂Y (a)

i.e. the discrete Fourier transform of the distribution of X ⊕Y is obtained by multiplying
the discrete Fourier transforms of X and Y .

We have

P̂X⊕Y (a) =
∑
z

(−1)a·zPX⊕Y (z) =
∑
z

(−1)a·z ∑

x,y s.t. x⊕y=z

PX(x)PY (y)

We rewrite it into

P̂X⊕Y (a) =
∑
z

∑

x,y s.t. x⊕y=z

(−1)a·xPX(x)(−1)a·yPY (y)

Since z does not appear anymore, the inner sum finally sums over all x and y. We
obtain

P̂X⊕Y (a) =
∑
x,y

(−1)a·xPX(x)(−1)a·yPY (y)

which clearly factors into P̂X(a)P̂Y (a).

Deduce that
P̂B(x)(a) =

(
P̂A(x)(a)

)r

Again, this is proven by induction on r.

If we had to compute the table of P̂B(x) form this formula, what would be the complexity,
roughly? Is it doable for k = 10 and r = 10? How about k = 128 and r = 10?

We would have to compute the table of P̂A(x) and to raise its 2k terms to the power r.
There are efficient algorithms to compute the discrete Fourier transform. For k = 10
and r = 10 this would be easy. For k = 128 we cannot even store the table so it would
be impossible.

6. For any function f : {0, 1}k → R such that
∑

x f(x) = 1, show that
∑
x

(
f(x)− 2−k

)2
= 2−k

∑

a 6=0

(
f̂(a)

)2

Hint: think about Parseval.



By expanding the left-hand side we obtain
∑
x

f(x)2 − 2−k

We notice that f̂(a) =
∑

x f(x) = 1, so the equation is equivalent to

∑
x

f(x)2 = 2−k
∑
a

(
f̂(a)

)2

To prove it, we start by the right-hand side sum. We have

∑
a

(
f̂(a)

)2
=

∑
a

∑
x

∑
y

(−1)a·(x⊕y)f(x)f(y)

We swap the sums and obtain

∑
a

(
f̂(a)

)2
=

∑
x

∑
y

f(x)f(y)
∑
a

(−1)a·(x⊕y)

The inner sum is always 0 when x 6= y and equals 2k otherwise. Hence,

∑
a

(
f̂(a)

)2
= 2k

∑
x

f(x)2

which is what we wanted to prove.

7. Deduce that the square Euclidean imbalance of B(x) is

SEI(B(x)) =
∑

a6=0

(
P̂A(x)(a)

)2r

By definition, we have

SEI(B(x)) = 2k
∑
y

(
PB(x)(y)− 2−k

)2

Thanks to the previous question, we obtain

SEI(B(x)) =
∑

a 6=0

(
P̂B(x)(a)

)2

We conclude be recalling our previous result P̂B(x)(a) =
(
P̂A(x)(a)

)r
.

Finally deduce that

SEI(B(x)) =
k∑

w=1

(
k

w

)
(g(w))2r

Is it feasible to compute it for k = 128 and r = 10?



In the previous equation we just group all a’s by their Hamming weight w and recall
P̂A(x)(a) = g(w(a)). To compute it we first have to make the table of g which is a
double sum with at most k terms in each sum so we have less than k2 terms to sum.
Then, the above sum is over k terms, so this is easy to compute.

8. Deduce an estimate on the number of samples to distinguish B(x) from a uniformly
distributed random variable.

The number of sample is within the order of magnitude of the inverse of the Chernoff
information which is roughly the SEI over 8 ln 2. Hence, the number of sample is

q ≈ 8 ln 2
∑k

w=1

(
k
w

)
(g(w))2r

9. As an application, compute this estimate for k = 2. How large r must be so that this is
higher than 280?

We have seen that g(1) = 0 and g(2) = −1
3 . Hence, q ≈ 8 ln 2× 9r. We need r ≥ 24

to have q ≥ 280.

2 Σ-Protocol for Cubic Residues

We consider an integer n = p× q where p and q are two primes numbers, 3 divides p− 1 but
not q − 1.

1. Show that −3 is a quadratic residue modulo p.

We use the properties of the Jacobi symbol. We have
(−3

p

)
=

(
p
−3

)
=

(
1
−3

)
= +1

so −3 is a quadratic residue modulo p.

2. Deduce that X2 + X + 1 has 2 roots in Zp.

The discriminant of X2+X+1 is −3. Let −3 ≡ u2 (mod p). Therefore, X2+X+1
has two square roots (−1± u)/2 mod p.
Alternately, we have X2 + X + 1 = (X + 1

2)2 − u2

4 = (X − −1+u
2 )(X + −1−u

2 ) from
which we deduce the two roots.

3. Show that X3 − 1 has exactly 3 different roots in Zp.

The polynomial X3 − 1 cannot have more than 3 roots over the field Zp. Multiple
roots must be roots of its derivative 3X2 which has only 0 as a root. So, X3 − s has
no multiple roots when s ∈ Z∗p. The polynomial X3 − 1 has root 1 and the roots of
X2 + X + 1. So, X3 − 1 has exactly 3 roots.

Deduce that for all s ∈ Z∗p the polynomial X3− s has either no root or exactly 3 different
roots.



We know it cannot have more than 3 roots. Assume it has one root θ. Let 1, ζ, ζ ′ be
the 3 roots of X3 − 1. We observe that θ, θζ, θζ ′ are 3 different roots of X3 − s. So
we have exactly 3 different roots.

4. By using the Chinese remainder theorem, show that any element of Z∗n has either exactly
3 cubic roots or none. Those with cubic roots will be called cubic residues. We denote by
CRn the set of all cubic residues from Z∗n.

A number x is a cubic root of s modulo n iff it is a cubic root modulo p and modulo
q. Since 3 is coprime with ϕ(q), every residue has a unique cubic root modulo q.
Hence, by using the Chinese remainder theorem we obtain that a number always has
the same number of cubic roots modulo n and modulo p.

5. Inspire by the Fiat-Shamir Σ-protocol and propose a Σ-protocol for the relation

R((n, v), s)⇔ vs3 mod n = 1

Be careful to go through the check list which has been given in the course, describe all
components of the Σ-protocol and prove it satisfies the required properties.



We propose

Prover Verifier
witness: s input: (n, v)
pick r ∈ Z∗n pick e ∈ {0, 1}

x = r3 mod n
x−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−

y = rse mod n
y−−−−−−−−−−−−−→ y3ve mod n

?= x

By going through the checklist, we define:
– the relation R is already defined
– the first prover function P(n, v; r) = r3 mod n
– the challenge domain E = {0, 1}
– the second prover function P(n, v, e; r) = rse mod n
– the verification function V (n, v, x, e, y)⇐⇒ y3ve mod n = x
– the extractor algorithm E(n, v, x, e, y, e′, y′): since e and e′ are different in {0, 1}

we denote y0 resp. y1 the y or y′ value corresponding to the challenge 0 resp. 1.
We compute z = y1/y0 mod n.

– the simulator algorithm S(n, v, e; r): pick y ∈U Z∗n form r and set x = y3ve mod
n.

We can now prove all required properties:
– (efficiency) all algorithms are polynomially bounded
– (completeness) for each ((n, v), s) in the language and a honestly generated tran-

script (x, e, y) then V (n, v, x, e, y) holds.
– (special soundness) for each (n, v), if (x, e, y) and (x, e′, y′) are two accepting

transcripts with same x, then E produces a witness. This comes from
(

y1

y0

)3

v ≡ y3
1v

y3
0

≡ x

x
≡ 1 (mod n)

– (honest verifier zero-knowledge) for a honest prover, y is always uniformly dis-
tributed (whatever e) and x = y3ve mod n. For the simulator, this is the same.
So, both transcripts have same distribution.

3 The GQ Protocol

Σ-protocols are made with some components satisfying a list of requirements as explained in
the course. We consider here Σ-protocols with the extra property of uniqueness of response:
using the notations from the course, for each x, a, e, there exists a unique z such that the
verification V (x, a, e, z) holds.

1. Show that the Schnorr Σ-protocol provides uniqueness of response.

In the Schnorr protocol we have rye = gs in the group so the response s is the unique
integer in Zq such that gs = rye.



Let (N, e) be an RSA public key. We consider the following GQ protocol with relation

R((N, e, X), x)⇐⇒ xe mod N = X

Prover Verifier
witness: x input: (N, e,X)

pick y ∈ Z∗N pick c ∈ {0, 1, . . . , 2` − 1}
Y ← ye mod N

Y−−−−−−−−−−−−−→
c←−−−−−−−−−−−−−

z ← yxc mod N
z−−−−−−−−−−−−−→ ze ?≡ Y Xc (mod N)

Warning: in the GQ protocol, notations are somewhat different from usual.

2. Assuming that GQ is a Σ-protocol, formalize all components except the extractor.

By going through the checklist, we define:
– the relation R is already defined
– the first prover function P(N, e; r) generates y form r and output Y = ye mod N
– the challenge domain E = {0, 1, . . . , 2` − 1}
– the second prover function P(N, e, c; r) computes y as before and z = yxc mod N
– the verification function V (N, e, Y, c, z)⇐⇒ ze ≡ Y Xc (mod N)
– the extractor algorithm E(N, e, Y, c, z, c′, z′) is not asked in this question
– the simulator algorithm S(N, e, c; r): pick z ∈U Z∗N form r and set Y = ze/Xc

(mod N)

3. Show (except special soundness) that all properties are satisfied.

We can now prove all required properties:
– (efficiency) all algorithms are polynomially bounded
– (completeness) for each ((N, e), x) in the language and a honestly generated tran-

script (Y, c, z) then V (N, e, Y, c, z) holds.
– (special soundness) not asked in this question
– (honest verifier zero-knowledge) for a honest prover, z is always uniformly dis-

tributed (whatever c) and Y = ze/Xc (mod N). For the simulator, this is the
same. So, both transcripts have same distribution.

4. Show that GQ provides response uniqueness.

The response z must satisfy ze ≡ Y Xc (mod N). Since (N, e) is a valid RSA
key, there exists a secret key d and by raising the equation to the power d we have
z = Y dXdc (mod N), so z is unique.

5. When gcd(c1−c2, e) = 1, show that we can extract a witness from two transcripts (Y, c1, z1)
and (Y, c2, z2).
Hint: use the extended Euclid algorithm to find two integers a and b such that ae+ b(c1−
c2) = 1.



Let a and b from the extended Euclid algorithm be such that ae + b(c1− c2) = 1. We

have ze
1 ≡ Y Xc1 and ze

2 ≡ Y Xc2 so X ≡ Xae Y bXbc1

Y bXbc2
≡ Xae zbe

1

zbe
2

so x = Xa zb
1

zb
2

mod N

satisfies X ≡ xe.

6. Deduce that we have an extractor which might fail sometimes. Estimate the probability
of failure for e = 65 537.

When getting two transcripts with same Y the extractor E(N, e, Y, c, z, c′, z′) works

by taking Xa zb
1

zb
2

mod N as above. It fails in the extended Euclid algorithm if gcd(c1−
c2, e) 6= 1. For e prime, this is equivalent to e divides c1 − c2. For ` large and
e = 65 537, which is prime, the probability of this event is roughly 1/e, which is
small.


