Advanced Cryptography - Midterm Exam

Serge Vaudenay

22.4.2009

1 RSA Public-Key Recovery

Given an integer e and a few $\left(x_{i}, y_{i}\right)$ pairs such that $y_{i}=x_{i}^{e} \bmod N$ for some unknown common N of known bit-length ℓ, we consider the problem of recovering N. We assume that $0 \leq x_{i}, y_{i}<N$ and that i ranges from 1 to n.

1. Using Buffon's needle problem we can show that the probability that two independent uniformly distributed integers in $\left\{0,1, \ldots, 2^{\ell}-1\right\}$ are coprime tends towards $\frac{6}{\pi^{2}}$ as ℓ goes to infinity. We take independent uniformly distributed integers X_{1}, \ldots, X_{n} in $\left\{0,1, \ldots, 2^{\ell}-\right.$ 1\}. Show that the probability that $\operatorname{gcd}\left(X_{1}, \ldots, X_{n}\right)>1$ is less than $\left(1-\frac{6}{\pi^{2}}\right)^{\frac{n}{2}}$ as ℓ goes to infinity.
Hint: consider $\frac{n}{2}$ disjoint pairs of form $\left(X_{2 i-1}, X_{2 i}\right)$.
2. We now take iid random integers X_{1}, \ldots, X_{n} in $\left\{0,1, \ldots, 2^{\ell}-1\right\}$ which are uniformly distributed among the multiples of N. Show that $\operatorname{gcd}\left(X_{1}, \ldots, X_{n}\right)=N$ except with negligible probability as n increases.
3. Deduce that we can recover N by computing $\operatorname{gcd}\left(x_{1}^{e}-y_{1}, \ldots, x_{n}^{e}-y_{n}\right)$. What is its complexity in terms of ℓ, e, and n ?

2 DP and LP Tricks

Consider a function f from $A=\{0,1\}^{p}$ to $B=\{0,1\}^{q}$. We define DP^{f} and LP^{f} as functions from $A \times B$ to \mathbf{R} as usual by

$$
\begin{aligned}
& \operatorname{DP}^{f}(a, b)=\operatorname{Pr}_{X}[f(a \oplus X) \oplus f(X)=b] \\
& \operatorname{LP}^{f}(a, b)=(2 \underset{X}{\operatorname{Pr}}[a \cdot X=b \cdot f(X)]-1)^{2}
\end{aligned}
$$

1. Show that for any $b \neq 0$ we have $\operatorname{DP}^{f}(0, b)=0$. Give a necessary and sufficient condition about f so that

$$
\forall a \neq 0 \quad \mathrm{DP}^{f}(a, 0)=0
$$

2. Show that for any $a \neq 0$ we have $\operatorname{LP}^{f}(a, 0)=0$.
3. We define a function g from B to \mathbf{R} by $g(y)=\operatorname{Pr}[f(X)=y]$ for all $y \in B$ where X is uniformly distributed in A. Show that for any function h we have

$$
E(h(f(X)))=E(g(Y) h(Y))
$$

where Y is uniformly distributed in B.
4. Deduce that

$$
\operatorname{LP}^{f}(0, b)=\left(E\left(g(Y)(-1)^{b \cdot Y}\right)\right)^{2}
$$

where Y is uniformly distributed in B.
5. Show that

$$
g(y)=2^{-q} \sum_{b \in B}(-1)^{b \cdot y} E\left((-1)^{b \cdot f(X)}\right)
$$

where X is uniformly distributed in A.
6. Deduce that

$$
\forall b \neq 0 \quad \operatorname{LP}^{f}(0, b)=0
$$

if and only if $g(y)=2^{-q}$ for all $y \in B$.
7. Deduce that

$$
\forall b \neq 0 \quad \operatorname{LP}^{f}(0, b)=0
$$

if and only if f is balanced, i.e. all elements in B are equally taken as images by f.

3 Applied Crypto-polymorphism

The CONFIKER worm is permanently updating itself by looking for updates over the Internet. Once it has found the update, it checks if the update code has a correct RSA signature with modulus N and public exponent e. One problem is that the value of N in the code of the worm is large enough to be used by anti-virus software to detect the presence of the worm. The worm conceptor attended to a lecture on cryptography and would like to obfuscate N using cryptographic tricks.

1. Recall how the RSA signature verification works for a message m with signature σ. (Assume for example PKCS\#1v1.5 with deterministic formatting rules for m.)
2. Once the worm installs, it picks a random prime number p, computes $N^{\prime}=p N$ and discards p and N. The value of N^{\prime} remains in the worm code. Show that a signature σ of an update code m can still be verified using e and N^{\prime} instead of e and N.
Can an anti-virus software detect the presence of the RSA key?
3. Assume that the anti-virus software conceptor has analyzed the code of the worm on two independent infected machines and extracted N_{1}^{\prime} and N_{2}^{\prime}. Show that he can deduce the value of N.
With the value of N, show that we can still detect the presence of the worm based on the value of N^{\prime} in the code. (Assume that N^{\prime} can easily be extracted from the code.)

4 Distinguishing Sources

We consider a source producing iid random variables $X_{i} \in\left\{0,1, \ldots, 2^{\ell}-1\right\}$ for $i=1, \ldots, q$. For this, we consider two distributions:

- the uniform distribution P_{0}
- the distribution P_{1} induced by $X_{i}=Y_{i} \bmod 2^{\ell}$ where Y_{i} is uniformly distributed in $\{0,1, \ldots, p-1\}$ and $p>2^{\ell}$. (Note that P_{0} can be considered as a particular case of P_{1} with $p=2^{\ell}$.)

We assume that ℓ is large, e.g. $\ell \geq 80$ and we let $r=p \bmod 2^{\ell}$.

1. Given $x \in\left\{0,1, \ldots, 2^{\ell}-1\right\}$, show that

$$
P_{1}(x)= \begin{cases}\left(1-\frac{r}{p}\right) 2^{-\ell}+\frac{1}{p} & \text { if } x<r \\ \left(1-\frac{r}{p}\right) 2^{-\ell} & \text { if } x \geq r .\end{cases}
$$

2. Describe a distinguisher using $q=1$ which achieves the optimal advantage.
3. For $q=1$, what is the best advantage for distinguishing P_{0} from P_{1} ? Express it as a formula in terms of ℓ, p, and r.
4. Deduce that for $p \leq c 2^{\ell}$ with c small and $r 2^{-\ell}$ neither too small nor too close to 1 , then P_{0} and P_{1} can be distinguished using a single sample.
5. Describe a distinguisher using an arbitrarily fixed q which achieves the optimal advantage.
6. Compute the squared Euclidean distance between P_{0} and P_{1}.
7. Assuming that P_{1} is close to P_{0}, approximate the Chernoff information between P_{0} and P_{1}. Deduce that $C\left(P_{0}, P_{1}\right) \leq \frac{2^{\ell}}{2 p \ln 2}$ whatever r.
8. Deduce that for p larger than $2^{2 \ell}$ the two distributions are indistinguishable in practice.
