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1 RSA Public-Key Recovery

Given an integer e and a few (xi, yi) pairs such that yi = xe
i mod N for some unknown common N

of known bit-length ℓ, we consider the problem of recovering N . We assume that 0 ≤ xi, yi < N

and that i ranges from 1 to n.

1. Using Buffon’s needle problem we can show that the probability that two independent
uniformly distributed integers in {0, 1, . . . , 2ℓ − 1} are coprime tends towards 6

π2 as ℓ goes
to infinity.

We take independent uniformly distributed integers X1, . . . , Xn in {0, 1, . . . , 2ℓ−1}. Show

that the probability that gcd(X1, . . . , Xn) > 1 is less than
(

1 − 6
π2

)
n
2 as ℓ goes to infinity.

Hint: consider n
2 disjoint pairs of form (X2i−1, X2i).

Let S = {0, 1, . . . , 2ℓ − 1}

lim
ℓ→∞

Pr
X1,X2∈S

[gcd(X1, X2) = 1] =
6

π2

⇐⇒ lim
ℓ→∞

Pr
X1,X2∈S

[gcd(X1, X2) > 1] = 1 −
6

π2

lim
ℓ→∞

Pr
X1,...,Xn∈S

[gcd(X1, X2, . . . , Xn) > 1]

6 lim
ℓ→∞

Pr
X2i−1,X2i∈S

[gcd(X1, X2) > 1, gcd(X3, X4) > 1, . . . , gcd(Xn−1, Xn) > 1]

6 lim
ℓ→∞

n/2
∏

i=1

Pr
X2i−1,X2i∈S

[gcd(X2i−1, X2i) > 1]

6

n/2
∏

i=1

lim
ℓ→∞

Pr
X2i−1,X2i∈S

[gcd(X2i−1, X2i) > 1] 6

n/2
∏

i=1

(

1 −
6

π2

)

=

(

1 −
6

π2

)n/2

2. We now take independent random integers X1, . . . , Xn which are uniformly distributed
among the set of all multiples of N in {0, 1, . . . , 2ℓ − 1}. Show that gcd(X1, . . . , Xn) = N

except with negligible probability as n increases.

Xi = kiN, ki ∈ S = {0, 1, . . . , 2ℓ − 1}
gcd(X1, . . . , Xn) = gcd(k1N, . . . , knN) = N · gcd(k1, . . . , kn)

From the previous question we know that:

lim
ℓ→∞

Pr
k1,...,kn∈S

[gcd(k1, . . . , kn) > 1] 6

(

1 −
6

π2

)n/2

When n increases this probability decreases. Hence gcd(k1, . . . , kn) = 1 except with
negligible probability, which means that gcd(X1, . . . , Xn) = N except with negligible
probability as n increases.
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3. Deduce that we can recover N by computing gcd(xe
1 − y1, . . . , x

e
n − yn). What is its

complexity in terms of ℓ, e, and n?

xe
i mod N = yi and 0 6 xi, yi < N

Hence we can write xe
i − yi = kiN

gcd(xe
1 − y1, . . . , x

e
n − yn) = gcd(k1N, . . . , knN) = N · gcd(k1, . . . , kn)

From the previous question we can conclude that gcd(xe
1 − y1, . . . , x

e
n − yn) = N

except with negligible probability.

The complexity to compute this gcd can be devided in three parts:
First there is n exponentiation to compute: O(n · e · l2 · log e)
Then there is n substraction to do: O(n · l)
And finaly there is the gcd to do between n elements: O(n · e2 · l2)

Hence the overall computation is O(n · e2 · l2 · log e)
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2 DP and LP Tricks

Consider a function f from A = {0, 1}p to B = {0, 1}q. We define DPf and LPf as functions
from A × B to R as usual by

DPf (a, b) = Pr
X

[f(a ⊕ X) ⊕ f(X) = b]

LPf (a, b) =

(

2 Pr
X

[a · X = b · f(X)] − 1

)2

1. Show that for any b 6= 0 we have DPf (0, b) = 0. Give a necessary and sufficient condition
about f so that

∀a 6= 0 DPf (a, 0) = 0

∀b 6= 0, DPf (0, b) = Pr
X

[f(X) ⊕ f(X) = b] = Pr
X

[b = 0] = 0

Note that DPf (a, 0) = Pr
X

[f(a ⊕ X) ⊕ f(X) = 0] = Pr
X

[f(a ⊕ X) = f(X)]

∀a 6= 0 DPf (a, 0) = Pr
X

[f(a⊕X) = f(X)] = 0 ⇐⇒ ∀X, ∀a 6= 0 f(a⊕X) 6= f(X)

Moreover a 6= 0 ⇐⇒ a ⊕ X 6= X ⇐⇒ ∀X, Y X 6= Y

Hence f is injective.

2. Show that for any a 6= 0 we have LPf (a, 0) = 0.

∀a 6= 0 LPf (a, 0) =

(

2 Pr
X

[a · X = 0] − 1

)2

Pr
X

[a · X = 0] = Pr
X1,...,Xp

[a1X1 ⊕ . . . ⊕ apXp = 0] =
1

2

⇒ ∀a 6= 0 LPf (a, 0) =

(

2 ·
1

2
− 1

)2

= 0
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3. We define a function g from B to R by g(y) = Pr[f(X) = y] for all y ∈ B where X is
uniformly distributed in A. Show that for any function h we have

E(h(f(X))) = 2q · E(g(Y )h(Y ))

where Y is uniformly distributed in B and where E(X) is the expected value of the random
variable X.

Recall: E(X) =
∑

x

xPr[X = x]; and E(f(X)) =
∑

x f(x) Pr[X = x]

E(h(f(X))) =
∑

x

h(f(x)) Pr[X = x]

= 2q
∑

y

h(y) Pr[f(X) = y] Pr[Y = y]

= 2q
∑

y

h(y)g(y) Pr[Y = y]

= 2qE(g(Y )h(Y ))

4. Deduce that

LPf (0, b) = 22q
(

E
(

g(Y )(−1)b·Y
))2

where Y is uniformly distributed in B.

Recall: LPf (a, b) =
(

E
(

(−1)a·X⊕b·f(x)
))2

Hence LPf (0, b) =
(

E
(

(−1)b·f(x)
))2

Let h(y) = (−1)b·y then from the previous question we have:

LPf (0, b) = (E (h(f(X))))2

= (2qE (g(Y )h(Y )))2

= 22q
(

E
(

g(Y )(−1)b·Y
))2
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5. Show that
g(y) = 2−q

∑

b∈B

(−1)b·yE
(

(−1)b·f(X)
)

where X is uniformly distributed in A.

2−q
∑

b∈B

(−1)b·yE
(

(−1)b·f(X)
)

=
∑

b∈B

(−1)b·yE
(

g(Y )(−1)bY
)

= E

(

∑

b∈B

(−1)b·yg(Y )(−1)bY

)

= E

(

g(Y )
∑

b∈B

(−1)b·(y+Y )

)

= E (g(Y )2q1Y =y)

= 2qE (g(y)1Y =y) = g(y)

6. Deduce that
∀b 6= 0 LPf (0, b) = 0

if and only if g(y) = 2−q for all y ∈ B.

If ∀b 6= 0 LPf (0, b) = 0 ⇒ ∀b 6= 0 E
(

(−1)bf(x)
)

= 0 (from question 4)

⇒ g(y) = 2−q for all y ∈ B (from question 5)

Conversely, if ∀y ∈ B g(y) = 2−q ⇒ ∀b 6= 0 E
(

g(Y )(−1)bY
)

= 0

⇒ ∀b 6= 0 LPf (0, b) = 0 (from question 4)
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7. Deduce that
∀b 6= 0 LPf (0, b) = 0

if and only if f is balanced, i.e. all elements in B are equally taken as images by f .

∀b 6= 0 LPf (0, b) = 0

⇐⇒ ∀y ∈ B g(y) = Pr[f(X) = y] =
1

2q
(from question 6)

⇐⇒ All elements in B are equally taken as images by f

⇐⇒ f is balanced.
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3 Applied Crypto-polymorphism

The CONFIKER worm is permanently updating itself by looking for updates over the Internet.
Once it has found the update, it checks if the update code has a correct RSA signature with
modulus N and public exponent e. One problem is that the value of N in the code of the
worm is large enough to be used by anti-virus software to detect the presence of the worm. The
worm conceptor attended to a lecture on cryptography and would like to obfuscate N using
cryptographic tricks.

1. Recall how the RSA signature verification works for a message m with signature σ.

(Assume for example PKCS#1v1.5 with deterministic formatting rules for m.)

RSA signature public key: (e, N)
RSA signature secret key: (d, N)
σ = format(m)d mod N , where format(m) = 0100FF · · ·FF00‖h(m)
⇒ σe mod N = formatm

2. Once the worm installs, it picks a random prime number p, computes N ′ = pN and
discards p and N . The value of N ′ remains in the worm code. Show that a signature σ

of an update code m can still be verified using e and N ′ instead of e and N .

Can an anti-virus software detect the presence of the RSA key?

The standard method for signature verification is to verify the following equality:
(σe − format(m)) mod N = 0. However the value of N has been discarded.

We know that:
σe mod N = format(m)
⇒ N | ((σe mod N ′) − format(m))
⇒ gcd((σe mod N ′) − format(m), N ′) > 1
and this latter property is exceptionnal as N ′ only has 3 big prime factors.
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3. Assume that the anti-virus software conceptor has analyzed the code of the worm on two
independent infected machines and extracted N ′

1 and N ′
2. Show that he can deduce the

value of N .

With the value of N , show that we can still detect the presence of the worm based on the
value of N ′ in the code. (Assume that N ′ can easily be extracted from the code.)

N ′
1 = p1N, N ′

2 = p2N If gcd(p1, p2) = 1 ⇒ gcd(N ′
1, N

′
2) = N

Detection is done by verifying the following equality: gcd(N ′, N) = N .
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4 Distinguishing Sources

We consider a source producing iid random variables Xi ∈ {0, 1, . . . , 2ℓ−1} for i = 1, . . . , q. For
this, we consider two distributions:

• the uniform distribution P0

• the distribution P1 induced by Xi = Yi mod 2ℓ where Yi is uniformly distributed in
{0, 1, . . . , p − 1} and p > 2ℓ. (Note that P0 can be considered as a particular case of
P1 with p = 2ℓ.)

We assume that ℓ is large, e.g. ℓ ≥ 80 and we let r = p mod 2ℓ.

1. Given x ∈ {0, 1, . . . , 2ℓ − 1}, show that

P1(x) =







(

1 − r
p

)

2−ℓ + 1
p if x < r

(

1 − r
p

)

2−ℓ if x ≥ r.

P0 uniform over {0, 1, . . . , 2ℓ − 1}
P1 = ( uniform over {0, 1, . . . , p − 1}) mod 2ℓ

p mod 2ℓ = r ⇒ p = r + n2ℓ ⇐⇒ n = (p − r)2−ℓ

P1(x) =







n+1
p =

(

1 − r
p

)

2−ℓ + 1
p if x < r

n
p =

(

1 − r
p

)

2−ℓ if x ≥ r.

_�

0�
� � � � � 	 �

x
??

��
��

��

r
??

2ℓ − 1
""
"

2. Describe a distinguisher using q = 1 which achieves the optimal advantage.

Recall that P0(x) = 2−ℓ

P0(x)

P1(x)
=

{

< 1 if x < r

≥ 1 if x ≥ r.

Hence if x < r answer 1, else answer 0.
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3. For q = 1, what is the best advantage for distinguishing P0 from P1? Express it as a
formula in terms of ℓ, p, and r.

Adv =
1

2

∑

x

|P0(x) − P1(x)|

=
1

2





∑

x<r

∣

∣

∣

∣

r

p
2−ℓ −

1

p

∣

∣

∣

∣

+
∑

x>r

∣

∣

∣

∣

r

p
2−ℓ

∣

∣

∣

∣





=
1

2p

(

r(1 − r2−ℓ) + (2ℓ − r)r2−ℓ
)

=
r

2p

(

(1 − r2−ℓ) + (2ℓ − r)2−ℓ
)

=
r

2p

(

(1 − r2−ℓ) + (1 − r2−ℓ)
)

=
r

p

(

1 − r2−ℓ
)

4. Deduce that for p ≤ c2ℓ with c small and r2−ℓ neither too small nor too close to 1, then
P0 and P1 can be distinguished using a single sample.

Adv=
r

p

(

1 − r2−ℓ
)

=
2ℓ

p
· r2−ℓ ·

(

1 − r2−ℓ
)

As
2ℓ

p
≥

1

c
is non negligeable, and so are r2−ℓ and

(

1 − r2−ℓ
)

, a single sample can

be used to distinguish P0 from P1.

11



5. Describe a distinguisher using an arbitrarily fixed q which achieves the optimal advantage.

The best distinguisher using multiple samples (q samples) will have as parameter R

the following:

R =
2−qℓ

((

1 − r
p

)

2−ℓ + 1
p

)#{i:xi<r} ((

1 − r
p

)

2−ℓ
)q−#{i:xi<r}

The best distinguisher will thus simply compare R and 1.

6. Compute the squared Euclidean distance between P0 and P1.

SEI(P0, P1) = 2ℓ
∑

x

|P0(x) − P1(x)|2

= 2ℓ





∑

x<r

(

r

p
2−ℓ −

1

p

)2

+
∑

x>r

(

r

p
2−ℓ

)2




= 2ℓ

(

r

(

r

p
2−ℓ

)2

− 2
r2

p2
2−ℓ +

r

p2
+
(

2ℓ − r
)

(

r

p
2−ℓ

)2
)

= 2ℓ

(

−r2

p2
2−ℓ +

r

p2

)

= 2ℓ r

p2

(

1 − r2−ℓ
)
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7. Assuming that P1 is close to P0, approximate the Chernoff information between P0 and
P1. Deduce that C(P0, P1) ≤

2ℓ

2p ln 2 whatever r.

C(P0, P1) =
SEI(P0, P1)

8 ln 2
=

1

8 ln 2
·

r

p2
2ℓ(1 − r2−ℓ)

=
2ℓ

2p ln 2
·

r

4p
· (1 − r2−ℓ)

6
2ℓ

2p ln 2

8. Deduce that for p larger than 22ℓ the two distributions are indistinguishable in practice.

p > 22ℓ ⇒ C(P0, P1) 6
2ℓ

2p ln 2
<

2ℓ

2 · 22ℓ ln 2
⇒ C(P0, P1) <

1

2ℓ+1 ln 2
<

1

2ℓ

We need at least 2ℓ+1 ln 2 samples wich is more than 2ℓ samples.
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