
Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

4.5.2010

– all documents are allowed

– a pocket calculator is allowed

– communication devices are not allowed

– answers to the exercises must be provided on a separate sheet

– readability and style of writing will be part of the grade

– do not forget to put your name on your copy!

1 RC4 Biases

This exercise is partly inspired from Mantin-Shamir, A Practical Attack on Broad-
cast RC4, published in the proceedings of FSE 2001, LNCS vol. 2355, Springer.

The RC4 pseudorandom number generator is defined by a state and an algorithm which
update the state and produces an output byte. In RC4, a state is defined by

– two indices i and j in Z256;

– one permutation S of Z256.

By abuse of notation we write S(x) for an arbitrary integer x as for S(x mod 256). The state
update and output algorithm works as follows:

1: i← i+ 1
2: j ← j + S(i)
3: exchange the values at position S(i) and S(j) in table S
4: output zi = S(S(i) + S(j))

Q.1 Assume that the initial S is a random permutation with uniform distribution and that i
and j are set to 0.

Q.1a What is the probability that [S(1) 6= 2 and S(2) = 0]?

It is 1
N ×

N−2
N−1 with N = 256.

Q.1b If S(1) 6= 2 and S(2) = 0 hold, show that the second output z2 is always 0.

Let S(1) = x and S(x) = y initially. At the first iteration, i is set to 1, j is set to x,
and S(1) and S(x) are exchanged. There values become y and x respectively. Then,
i is set to 2, j is set to x again, and S(2) and S(x) are exchanged. There values
become x and 0 respectively. The output is S(x) which is 0.

Q.1c In other cases, show that z2 = 0 with probability close to 1
256 .

Hint: a 2-line heuristic argument is fine for this question (and this question only).

Ideally, we would have to study many cases. In practice, we just assume that the
number is truly random in that case so Pr[z2 = 0] ≈ 1

N = 1
256 .

(OK, the same argument could have applied in the previous case which would have
contradicted the result. Nevertheless, 1

256 is a probability which is confirmed experi-
mentally.)

Q.1d Deduce p = Pr[z2 = 0]. What do you think of this probability?

Clearly, p = 1
N ×

N−2
N + 1

N ≈
2
N . This is twice that what we should expect. This is a

deviant property.

Q.2 Let N be an integer. Let now consider a random generator which generate a byte Z such
that Pr[Z = 0] = p � 1

N and Pr[Z = x] = 1−p
N−1 for 0 < x < N . In every question below,

treat the general case then apply it to an example with N = 256 and p = 2
N .

Q.2a Describe a best distinguisher between Z and an unbiased generator based on n sam-
ples? Show that there is one making the output 1 if and only if k

n ≥ τ where k is the
number of occurrences of Z = 0 in the n samples, and

τ =
1

1 + log(pN)

log
1− 1

N
1−p

is a threshold.

Treat the general case then compute τ in the example.

The best distinguisher takes the decision corresponding to the maximum likelihood
probability of occurrence of the sample vector. Given a sample vector z1, . . . , zn, it
computes the probability of getting z1, . . . , zn under the two distributions and takes
the one with higher probability. Since samples are independent, this is the prod-
uct of all Pr[Z = zi]. In the uniform case, this is 1

Nn . In the biased case, this is

pk
(

1−p
N−1

)n−k
where k = #{i; zi = 0}. We have

pk
(
1− p

N − 1

)n−k

≥ 1

Nn
⇐⇒ (Np)k

(
N

1− p

N − 1

)n−k

≥ 1

⇐⇒ k log(Np) + (n− k) log

(
N

1− p

N − 1

)
≥ 0

⇐⇒ k log

(
p
N − 1

1− p

)
≥ n log

(
1

N
× N − 1

1− p

)

⇐⇒ k

n
≥

log
1− 1

N
1−p

log
(
pN−1

1−p

) =
1

1 + log(pN)

log
1− 1

N
1−p

which is of form k
n > τ .

In the example, we have N = 256 and p = 1
128 so τ = 0.00563680 ≈ 1

177 .

Q.2b Give a simpler formula to estimate τ when 1
N � 1 and p� 1.

Treat the general case then compute the estimate in the example.

If p and 1
N are small we have ln

1− 1
N

1−p ≈ p− 1
N and ln(pN) is non-negligible. So,

τ =
log

1− 1
N

1−p

log
(
pN−1

1−p

)
=

1
ln(pN)

ln
1− 1

N
1−p

+ 1

≈ 1
ln(pN)

p− 1
N

+ 1

If pN − 1 is negligible, we have τ ≈ 1
N . In general, ln(pN) is not negligible and we

have τ ≈ p− 1
N

ln(pN) .
The example is in the latter case. We obtain τ ≈ 0.00563552 which is not a so bad
approximation.

Q.2c What is the best advantage of a distinguisher when limited n = 1?
Treat the general case then compute the advantage in the example.

With n = 1, the output is 1 iff k = 1. So, the advantage is Adv = p− 1
N .

In our example, this is Adv = 1
256 .

Q.2d What is the best advantage of a distinguisher when limited n = 2? (Assume that
τ ≤ 1

2 .)
Treat the general case then compute the advantage in the example.
Hint: reduce to computing Pr[k = 0].

With n = 2, the output is 1 iff k ≥ 2τ . For τ smaller than 1
2 , this holds iff k ≥ 1.

So, Adv =
(
2p(1− p) + p2

)
−
(

2
N (1− 1

N) + 1
N2

)
. This simplifies to Adv ≈ 2(p− 1

N).

In our example, this is Adv ≈ 1
128 .

Q.2e What is the best advantage of a distinguisher when limited n = b 1τ c?
Treat the general case then compute the advantage in the example.

The output is 1 iff k 6= 0. So, Adv = (1− (1− p)n)−
(
1− (1− 1

N)n
)
with n = b 1τ c.

This yields Adv =
(
1− 1

N

)n
− (1− p)n.

In our example, this is Adv ≈ 1
4 with n = 177.

Q.2f Show that the Chernoff information between the two distributions is

C = −τ log2
p

τ
− (1− τ) log2

1− p

1− τ

where α = 1/N
p , β = 1−1/N

1−p .
Treat the general case then compute the Chernoff information in the example.

Hint: show that C = − log2min
(
pαλ + (1− p)βλ

)
and that the minimum is reached

when (
α

β

)λ

=
1− p

p
× 1

1
τ − 1

and deduce the optimal λ to compute C.

Hint2: if you are afraid of manipulating ugly formulae, consider skipping this question.

The Chernoff information is − log2minλ∈]0,1[f(λ) where

f(λ) = p1−λ 1

Nλ
+ (N − 1)

(
1− p

N − 1

)1−λ 1

Nλ

This can be written f(λ) = pαλ + (1− p)βλ where α = 1/N
p and β = 1−1/N

1−p . Since f
is convex and f(0) = f(1) = 1, f reaches a single minimum which is in]0, 1[. The
minimum is reached when the derivative vanishes, which leads us to(

α

β

)λ

= −1− p

p
× lnβ

lnα
=

1− p

p
× 1

1
τ − 1

which yields λ = log(τ
1−τ ×

1−p
p)/ log(αβ). We deduce αλ =

(
τ

1−τ ×
1−p
p

)1−τ
and

βλ =
(

τ
1−τ ×

1−p
p

)−τ
. So, f(λ) =

(
τ

1−τ ×
1−p
p

)−τ 1−p
1−τ =

(p
τ

)τ (1−p
1−τ

)1−τ
. We obtain

the result.
In our case we obtain C = 0.000487898 ≈ 1

2 050 .

Q.2g Deduce an approximation for the required number of samples to distinguish the two
distributions.

Treat the general case then compute this number in the example. Discuss the validity
of the approximation.

Based on the Sanov theorem we approximate it to 1/C.
In our example, this is 2 050. This is quite pessimistic since we reach a pretty good
advantage with 177 samples.

Q.2h Compute the Squared Euclidean imbalance between the two distributions and compare
with the Chernoff information.

Treat the general case then compute the SEI in the example. Discuss the validity of
the approximation for the Chernoff information.

We have

SEI = N

(
p− 1

N

)2

+N(N − 1)

(
1− p

N − 1
− 1

N

)2

=
N2

N − 1

(
p− 1

N

)2

In our case, this is SEI = 1
255 . We shall have C ≈ SEI/8 ln 2. In our case,

8 ln 2/SEI ≈ 1 414. So, the C ≈ SEI/8 ln 2 approximation is not very good in our
example. Actually, this estimate is also pessimistic. We can compute the exact ad-
vantage for arbitrary n and we get that it becomes higher than 1

2 as soon as n ≥ 671.
The bad estimates may come from the fact that the best advantage increases very
smoothly after reaching 1

4 as shown by the following graph.

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750 50000

1/4

1/2

3/4

1
Best advantage in terms of number of samples

2 Breaking RSA with Low d Exponent

This exercise is inspired from Wiener, Cryptanalysis of Short RSA Secret Expo-
nents, published in IEEE Transactions on Information Theory vol. 36 in 1990.

In this exercise we assume some RSA public key (N, e) and a secret key d such that ed mod
ϕ(N) = 1. We let pq = N be the factorization of N into primes. We assume that p and q
are roughly of same length, i.e. 1

c

√
N ≤ p, q ≤ c

√
N for some c ≥ 1 (e.g. c = 2). We assume

that d is short so that d ≤ Nα with α < 1
4 . We will assume Nα ≤ 1

cN
1
4 . The objective of the

exercise is to show that we can recover d from N and e in polynomial time.

Q.1

Q.1a Show that there exists an integer k such that ed = k(N − p− q + 1) + 1.

Since ed mod ϕ(N) = 1 there exists k such that ed = kϕ(N) + 1. We observe that
ϕ(N) = (p− 1)(q − 1) = N − p− q + 1 and conclude.

Q.1b Show that gcd(k, d) = 1 and

0 ≤ k

d
− e

N
=

k

d
×

p+ q − 1− 1
k

N

Due to ed = kϕ(N) + 1, gcd(k, d) divides d and k so it must divides 1 as well.
Therefore, gcd(k, d) = 1.
We divide the equation ed = k(N − p− q + 1) + 1 by dN . The equality comes from
straightforward computation. The inequality comes from that p+ q − 1− 1

k ≥ 0.

Q.1c Deduce that if d is such that d ≤ 1
cN

1
4 and c ≥ 3, then 0 ≤ k

d −
e
N ≤

2
3d2

.

Hint: show that p+q
N ≤ 2

3d2
and use the result from Q.1b.

Since e < ϕ(N), we have that k
d =

e− 1
d

ϕ(N) < 1. We have

p+ q

N
=

1√
N

(
p√
N

+

√
N

p

)
≤ 2c√

N
≤ 2c2

3
√
N
≤ 2

3d2

for c ≥ 3. So, 0 ≤ k
d −

e
N = k

d ×
p+q−1− 1

k
N ≤ 2

3d2
.

In the remaining part of the exercise, we will consider an arbitrary rational number x
such that there exist integers µ and ν such that gcd(µ, ν) = 1 and 0 ≤ µ

ν − x ≤ 2
3ν2

. We will
show that we can build an algorithm making from x a list of rational numbers containing µ

ν
in polynomial time in the bitlengths of x. (Note that the bitlength of a rational number is
the cumulated bitlength of its numerator and denominator.)

Q.2 Under the assumption that this algorithm is found, deduce that we can recover d in
polynomial time.

Let x = e
N , µ = k and ν = d. Thanks to Q.1, these satisfy the hypothesis 0 ≤ µ

ν −x ≤
2

3ν2
and gcd(µ, ν) = 1. Using the algorithm (to be found), we list values including µ

ν
whose least denominator is d. Once we have a candidate for d, we can check it to
see if it decrypts RSA encryptions. So, we isolate the correct value. The complexity
is polynomial in terms of the bitlength of N .

Q.3 How can we factor N from e and d?

We write ed − 1 = 2ts with s odd, pick a random x and raise xt mod N . If it is 1,
we try again. Otherwise, we repeatedly square modulo N until it becomes stationary.
If the limit is not 1, then x is not invertible so gcd(N, x) yields a p or q. Otherwise,
we take the last value y different from 1. If y = N − 1, we try again. Otherwise,
gcd(N, x− 1) yields a p or q.

In what follows we forget about RSA and its settings. We only consider the positive
rational number x. Given a sequence of integers (or real numbers in Q.4a) a0, a1, . . . such that
ai > 0 for all i and an integer n, we define the following notation:

[a0, a1, . . . , an] = a0 +
1

a1 +
1

...+ 1
an

Q.4 Let u and v be the sequences defined by

un = anun−1 + un−2 u−1 = 1 u−2 = 0
vn = anvn−1 + vn−2 v−1 = 0 v−2 = 1

Q.4a Show that [a0, a1, . . . , an] =
un
vn

for all n.

Hint: first show that [a0, a1, . . . , an−1, x] =
xun−1+un−2

xvn−1+vn−2
for all real number x and all n.

Hint2: try with x = an + 1
x′ .

The hint equation clearly holds for n = 0. Assume that it holds for n and we show
it for n + 1. We have [a0, a1, . . . , an−1, an, x] = [a0, a1, . . . , an−1, [an, x]] so we let

x′ = [an, x] = an+
1
x and we have [a0, a1, . . . , an−1, an, x] =

x′un−1+un−2

x′vn−1+vn−2
= xun+un−1

xvn+vn−1
.

So, the hint equation is shown. We apply it with x = an and we are done.

Q.4b Show that unvn−1 − un−1vn = −(−1)n for all n.

It holds by induction: it is quite clear for n = −2,−1. If it holds for n−1 and n−2,
then

unvn−1 − un−1vn = (anun−1 + un−2)vn−1 − un−1(anvn−1 + vn−2)

= un−2vn−1 − un−1vn−2

= (−1)n−1

= −(−1)n

so it holds for n as well.

Q.4c From now on, we assume that the ai’s are integers. Deduce that gcd(un, vn) = 1 and

that un
vn
− un−1

vn−1
= −(−1)n

vnvn−1
for all n.

We can divide the previous equation by gcd(un, vn) and get an integer equal to
−(−1)n/gcd(un, vn). So gcd(un, vn) divides 1 so it must be 1. We divide the equation
by vnvn−1 and obtain the result.

Q.5 Let x ≥ 0 be a real number. We define the a0, a1, . . . sequence of integers which can be
either finite of infinite as follows:

1: let r ← x and n← −1
2: loop
3: let n← n+ 1
4: let an = brc
5: exit if r = an
6: let r ← 1

r−an
7: end loop

We define the sequences u and v from a as before.
Q.5a Show that for all n, x is between un

vn
and un−1

vn−1
.

Hint: show that [a0, a1, . . . , an, r] = x at every iteration of the loop.

We show by induction that [a0, a1, . . . , an, r] = x every time we enter into the loop.
Then, we deduce that [a0, a1, . . . , an] ≤ x when n is even and [a0, a1, . . . , an] ≥ x
when n is odd. So, the un

vn
is alternating lower and higher than x.

Q.5b Show that when x is rational, the algorithm terminates and x = [a0, . . . , an] when it
stops.

Hint: show that 1
νvn
≤
∣∣∣x− un

vn

∣∣∣ ≤ 1
vn−1vn

if x 6= un
vn
.

We write x = µ
ν with gcd(µ, ν) = 1. We have

∣∣∣x− un
vn

∣∣∣ ≤ ∣∣∣un−1

vn−1
− un

vn

∣∣∣ = 1
vn−1vn

thanks

to last two questions. On the other hand, if x 6= un
vn
, we have that

∣∣∣x− un
vn

∣∣∣ ≥ 1
νvn

so
1
ν ≤

1
vn−1

so vn−1 ≤ ν. However, vn strictly increases, so it must become higher ν.
So, the algorithm terminates.
The property [a0, a1, . . . , an, r] = x at the entrance of the very last iteration leads to
increasing n and assigning r to the final an. So, [a0, a1, . . . , an−1, an] = x at the end.

Q.5c Deduce that the algorithm terminates if and only if x is rational.

We have shown that the algorithm terminates when x is rational. Conversely, if the
algorithm terminates, we can write x as a rational expression in terms of integers,
so x must be rational.

Q.5d Show that every positive rational number can be written [a0, a1, . . . , an] with ai positive
integers, ai 6= 0 for i > 0, and an ≥ 2 in the n > 0 case.

We observe that if r > 1 in the loop, then an cannot be 0 and the new r must satisfy
r > 1 again. If 0 ≤ x ≤ 1, then a0 = 0 but the new r satisfies r > 1 so only a0
can be 0. Finally, the last an cannot be equal to 1. Otherwise, it would mean that
r = an−1 + 1 in the previous iteration so the computation of an−1 would be wrong.

Q.6
Q.6a Show that

[a0, . . . , an−1, an + δ]− [a0, . . . , an−1, an] =
δ(−1)n

vn(vn + δvn−1)

Hint: sorry, no hint here.

Note that if we prove it for every positive integer δ, we have two rational functions
of δ which match for infinitely many δ’s, so they match for all of them. We have

[a0, . . . , an−1, a
′
n] =

u′n
v′n

=
a′nu

′
n−1 + u′n−2

a′nv
′
n−1 + v′n−2

=
a′nun−1 + un−2

a′nvn−1 + vn−2
=

(an + δ)un−1 + un−2

(an + δ)vn−1 + vn−2

where a′n = an + δ and u′ and v′ are the sequence obtained with this new a′n. With
δ = 0 we have

[a0, . . . , an−1, an] =
anun−1 + un−2

anvn−1 + vn−2

So, by computing the difference, regrouping, and using un−1vn−2 − un−2vn−1 =
(−1)n, we obtain the result.

Q.6b Assume that gcd(µ, ν) = 1. We denote x′ = [a′0, . . . , a
′
n] the result from the algorithm

with x′ = µ
ν instead of x. Prove that if 0 ≤ x − µ

ν ≤
2

3ν2
, then ai = a′i for i < n and

an = a′n − (n+ 1 mod 2).

Hint: skip this question.

Let δ be such that [a′0, . . . , a
′
n−1, a

′
n+δ] = x. Note that δ has the same sign as (−1)n+1

since x ≤ µ
ν . Since x− µ

ν = δ(−1)n

v′n(v
′
n+δv′n−1)

, v′n + δv′n−1 > 0. We have

2

3ν2
≥
∣∣∣∣x− µ

ν

∣∣∣∣ = |δ|
v′n(v

′
n + δv′n−1)

By construction, we have v′n = ν.
If δ < 0 (n even), we deduce |δ| ≤ 2

3 . So, we can write [a′0, . . . , a
′
n−1, a

′
n− 1+ δ′] = x

with 1 > δ′ > 0.
If δ > 0 (n odd), since v′n = a′nv

′
n−1 + v′n−2 and a′n ≥ 2 we have v′n−1 <

1
2v

′
n. So,

2

3
≥ δ

1 + 1
2δ

which leads us to δ < 1. So, we can write [a′0, . . . , a
′
n−1, a

′
n + δ] = x with 1 > δ ≥ 0.

This shows that running the algorithm on x will output ai = a′i for i = 0, . . . , n− 1
and an = a′n − 1 or a′n depending on the parity of n.

Q.6c Deduce that if 0 ≤ µ
ν−x ≤

2
3ν2

there exists n such that µ
ν = [a0, . . . , an+(n+1 mod 2)].

Hint: assume you did the previous question.

We apply the previous result with n set to the number of iteration for µ
ν .

Q.7 By observing that vn grows faster than a Fibonacci sequence, show that if x is rational,
the number of iterations of the previous algorithm is linearly bounded in terms of the
bitlength of x.

Let wn be defined by wn = wn−1 + wn−2, w−1 = 0, and w−2 = 1. By induction we
have that vn ≥ wn for all n. until the end of the sequence. This Fibonacci sequence

has terms in
(
1±

√
5

2

)n
. We can actually show that wn ≥ 1

5

(
1+

√
5

2

)n+3
. So, vn grows

exponentially fast and reaches the size of the denominator within a linear number of
iterations n.

Q.8
Q.8a Wrap up: show that if x is rational and if there exists µ and ν such that 0 ≤ µ

ν−x ≤
2

3ν2
,

we can make from x a list of rational numbers containing µ
ν in polynomial time.

Hint: just write the algorithm with an explanation about the odd n case.

The following algorithm prints the sequence of all [a0, . . . , an−1, an + (n mod
2)].

1: let r ← x, n← −1
2: let u−1 = 1, u−2 = 0, v−1 = 0, v−2 = 1
3: loop
4: let n← n+ 1
5: let an = brc
6: let un = anun−1 + un−2

7: let vn = anvn−1 + vn−2

8: if n mod 2 = 1 then
9: print un/vn

10: else
11: print (un + un−1)/(vn + vn−1)
12: end if
13: exit if r = an
14: let r ← 1

r−an
15: end loop

In the even n case, we replace an by an + 1 so un by un + un−1 due to un =
anun−1 + un−2, and the same for vn.

Q.8b Show that the following algorithm breaks RSA within a linear number of iterations.

1: let r ← e
N , n← −1

2: let v−1 = 0, v−2 = 1
3: let ρ← random
4: loop
5: let n← n+ 1
6: let an = brc
7: let vn = anvn−1 + vn−2

8: let r ← 1
r−an

9: let d← vn + vn−1 × (n+ 1 mod 2)
10: if ρed−1 mod N = 1 then
11: print d, factor N , and exit
12: end if
13: end loop

For the RSA attack the computation of u is useless. Instead of printing vn +
vn−1(n mod 2) we check if d can decrypt ρ2 mod N and factor N if this is the case.

