Advanced Cryptography - Final Exam

Serge Vaudenay

20.6.2011

- duration: 3h00
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- readability and style of writing will be part of the grade
- it is unlikely we will answer any technical question during the exam
- do not forget to put your full name on your copy!

I Σ-Protocol for \mathscr{P}

We consider an alphabet Z, a polynomial P, and a predicate R. We assume that R can be computed in polynomial time. Given $x \in Z^{*}$, we let

$$
R_{x}=\left\{w \in Z^{*} ; R(x, w) \text { and }|w| \leq P(|x|)\right\}
$$

where $|x|$ denotes the length of x. We define the language L from R by

$$
L=\left\{x \in Z^{*} ; R_{x} \neq \emptyset\right\}
$$

Q. In this question, we assume that there is an algorithm \mathcal{A} such that for any $x \in L$, we obtain $\mathcal{A}(x) \in$ R_{x} and that for any $x \in Z^{*}$, the running time of $\mathcal{A}(x)$ is bounded by $P(|x|)$.
Construct a Σ-protocol for L. Carefully specify all protocol elements and prove all properties which must be satisfied.

II OR Proof

Let $Z=\{0,1\}$ be an alphabet. We consider two Σ-protocols Σ_{1} and Σ_{2} for two languages L_{1} and L_{2} over the alphabet Z defined by two predicates R_{1} and R_{2}. We assume that Σ_{1} and Σ_{2} use the same challenge set E which is given a group structure with a law + . For $\Sigma_{i}, i \in\{1,2\}$, we denote \mathcal{P}_{i} the prover algorithm, V_{i} the verification predicate, \mathcal{E}_{i} the extractor, and S_{i} the simulator.
Q. 1 (AND proof) Construct a Σ protocol $\Sigma=\Sigma_{1}$ AND Σ_{2} for the language defined by

$$
R\left(\left(x_{1}, x_{2}\right),\left(w_{1}, w_{2}\right)\right) \Longleftrightarrow R_{1}\left(x_{1}, w_{1}\right) \text { AND } R_{2}\left(x_{2}, w_{2}\right)
$$

(OR proof) In the remaining of the exercise, we now let

$$
R\left(\left(x_{1}, x_{2}\right), w\right) \Longleftrightarrow R_{1}\left(x_{1}, w\right) \text { OR } R_{2}\left(x_{2}, w\right)
$$

This predicate defines a new language L. We construct a new Σ-protocol $\Sigma=\Sigma_{i}$ OR Σ_{2} for L by

- $\mathcal{P}\left(\left(x_{1}, x_{2}\right), w ; r_{1}, r_{2}\right)$ finds out i such that $R_{i}\left(x_{i}, w\right)$ holds, sets $j=3-i$, then picks a random $e_{j} \in E$ and runs $\mathcal{S}_{j}\left(x_{j}, e_{j} ; r_{1}\right)=\left(a_{j}, e_{j}, z_{j}\right)$. Then, it runs $\mathcal{P}\left(x_{i}, w ; r_{2}\right)=a_{i}$ and yield $\left(a_{1}, a_{2}\right)$.
- Upon receiving $e, \mathcal{P}\left(\left(x_{1}, x_{2}\right), w, e ; r_{1}, r_{2}\right)$ sets $e_{i}=e-e_{j}$, runs $\mathcal{P}\left(x_{i}, w, e_{i} ; r_{2}\right)=z_{i}$ and yields $\left(e_{1}, e_{2}, z_{1}, z_{2}\right)$.

The verification predicate is

$$
V\left(\left(x_{1}, x_{2}\right),\left(a_{1}, a_{2}\right), e,\left(e_{1}, e_{2}, z_{1}, z_{2}\right)\right) \Longleftrightarrow\left\{\begin{array}{l}
e=e_{1}+e_{2} \text { AND } \\
V_{1}\left(x_{1}, a_{1}, e_{1}, z_{1}\right) \text { AND } \\
V_{2}\left(x_{2}, a_{2}, e_{2}, z_{2}\right)
\end{array}\right.
$$

Q. 2 Show that Σ is complete and works in polynomial time.
Q. 3 Construct an extractor \mathcal{E} for Σ and show that is works, in polynomial time.
Q. 4 Construct a simulator \mathcal{S} for Σ and show that is works, in polynomial time.

III Smashing SQUASH-0

We consider an access control protocol called SQUASH-0 in which a client and a server hold a secret key K. In the protocol, the server sends a challenge C. The client must respond with

$$
S=(\operatorname{stoi}(C \oplus K))^{2} \bmod N
$$

for a given modulus N, where stoi is a function transforming a bitstring into an integer by stoi $(\varepsilon)=0$ for the zero-length bitstring ε, and

$$
\operatorname{stoi}(b \| s)=b+2 \times \operatorname{stoi}(s)
$$

for any bit $b \in\{0,1\}$ and any bitstring s. By convention, the least significant bit has position 0 . We further assume that N is larger than K and C.
Q. 1 Let c_{i} be -1 raised to the power of the bit position i in C. Let k_{i} be -1 raised to the power of the bit position i in K.
Show that

$$
S=\left(\frac{1}{4} \sum_{i, j} 2^{i+j} c_{i} c_{j} k_{i} k_{j}-\frac{2^{\ell}-1}{2} \sum_{i} 2^{i} c_{i} k_{i}+\frac{\left(2^{\ell}-1\right)^{2}}{4}\right) \bmod N
$$

where ℓ is the bitlength of N.
In what follows, we assume that $N=2^{\ell}-1$. Deduce

$$
S=\left(\frac{1}{4} \sum_{i, j} 2^{i+j} c_{i} c_{j} k_{i} k_{j}\right) \bmod N
$$

Q. 2 Deduce that by using about ℓ^{2} challenges and their responses, an adversary could recover K by solving a linear system of $O\left(\ell^{2}\right)$ equations with $\frac{\ell(\ell-1)}{2}$ unknowns.
As an example, consider $\ell=1024$. What is the complexity of the attack?
Hint: define $\kappa_{i, j}=k_{i} k_{j}$.
Q. 3 Given a function φ mapping a bitstring of length d to a real number, we define

$$
\hat{\varphi}(V)=\sum_{x}(-1)^{x . V} \varphi(x)
$$

where \cdot denotes the dot product between two bitstrings and the sum goes on all bitstrings x of length d. For the function $\varphi(x)=(-1)^{x \cdot U}$, show that $\hat{\varphi}(V)=2^{d}$ if $V=U$ and $\hat{\varphi}(V)=0$ otherwise. We write it $\hat{\varphi}(V)=2^{d} 1_{V=U}$.
Q. 4 In a chosen challenge attack, an adversary creates d challenges C^{1}, \ldots, C^{d} and all linear combinations of these challenges. Namely, $C\left(x_{1} \ldots x_{d}\right)=x_{1} C^{1} \oplus \cdots \oplus x_{d} C^{d}$. Given a d-bit vector x, we thus define $C(x)$. We write x as an argument of S and c_{i} as well so that $S(x)$ is the response to challenge $C(x)$ and $c_{i}(x)$ is -1 raised to the power of the bit position i in $C(x)$. Let U_{i} be the d-bit vector consisting of the bit at position i of C^{1}, \ldots, C^{d}.
Deduce that

$$
\hat{S}(V)=\frac{1}{4} \sum_{i, j} 2^{d+i+j} k_{i} k_{j} 1_{V=U_{i} \oplus U_{j}}
$$

Hint: observe $c_{i}(x)=(-1)^{x \cdot U_{i}}$ and use Q .1 then Q.3.
Q. 5 With the same notations, we assume that the function mapping a non-ordered pair $\{i, j\}$ with $i \neq j$ to $U_{i} \oplus U_{j}$ behaves like a random function. We further assume that d is pretty small. For each V, estimate the number of non-ordered pairs $\{i, j\}$ with $i \neq j$ such that $V=U_{i} \oplus U_{j}$.
Deduce that we get 2^{d} equations modulo N with $\ell(\ell-1) 2^{-d-1}$ unknowns $\kappa_{i, j}$ on average taking values in $\{-1,+1\}$.
Q. 6 We take $d=2 \log _{2} \ell$ and solve each equation by exhaustive search. Deduce a chosen-challenge attack to break the algorithm.
How many chosen challenges does it use, asymptotically?
What is its complexity?

IV PIF Implies PAF

We consider a function family F_{k} taking inputs of length λ, making outputs of length λ, and where the key k is also of length λ. We consider the two following games:

```
Game \(\operatorname{PIF}\left(\mathcal{A}, 1^{\lambda}\right)\) :
    pick some random coins \(k\) of length \(\lambda\)
    pick \(\rho\)
    run \(\mathcal{A}(\rho) \rightarrow x\)
    if \(|x| \neq \lambda\), output 0 and stop
    pick a random bit \(b\)
    if \(b=0\) then
    compute \(y=F_{k}(x)\)
else
    pick a random \(y\) of \(\lambda\) bits
    end if
    run \(\mathcal{A}(y ; \rho) \rightarrow b^{\prime}\)
    output \(b \oplus b^{\prime} \oplus 1\)
```

We say that F_{k} is PIF-secure (resp. PAF-secure) if for all polynomially bounded \mathcal{A}, we have that $\operatorname{Pr}\left[\operatorname{PIF}\left(\mathcal{A}, 1^{\lambda}\right)=1\right]-\frac{1}{2}\left(\right.$ resp. $\left.\operatorname{Pr}\left[\operatorname{PAF}\left(\mathcal{A}, 1^{\lambda}\right)=1\right]\right)$ is a negligible function in terms of λ.
Q. Show that if F_{k} is PIF-secure, then it is PAF-secure.

Hint: based on a PAF-adversary \mathcal{A} and some coins $\rho^{\prime}=r^{\prime}\|\rho\| b^{\prime \prime}$, define $\mathcal{A}^{\prime}\left(\rho^{\prime}\right)=x$ picked at random from r^{\prime} then $\mathcal{A}^{\prime}\left(y, \rho^{\prime}\right)=1$ if $\mathcal{A}(y ; \rho)=x$ and $\mathcal{A}^{\prime}\left(y, \rho^{\prime}\right)=b^{\prime \prime}$ otherwise. By considering \mathcal{A}^{\prime} as a PIF-adversary, look at the link between $\operatorname{Pr}\left[\operatorname{PIF}\left(\mathcal{A}^{\prime}, 1^{\lambda}\right)=1\right]-\frac{1}{2}$ and $\operatorname{Pr}\left[\operatorname{PAF}\left(\mathcal{A}, 1^{\lambda}\right)=1\right]$.

