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I X-Protocol for P

We consider an alphabet Z, a polynomial P, and a predicate R. We assume that R can be computed in
polynomial time. Given x € Z*, we let

R, ={we€ Z";R(x,w) and |w| < P(|x|)}
where |x| denotes the length of x. We define the language L from R by
L={xe€Z";R,#0}

Q. In this question, we assume that there is an algorithm 4 such that for any x € L, we obtain 4(x) €
R, and that for any x € Z*, the running time of A4(x) is bounded by P(|x|).
Construct a X-protocol for L. Carefully specify all protocol elements and prove all properties
which must be satisfied.

I OR Proof

Let Z ={0,1} be an alphabet. We consider two X-protocols X and ¥, for two languages L; and L,
over the alphabet Z defined by two predicates R; and R,. We assume that X; and X, use the same
challenge set E which is given a group structure with a law +. For X;, i € {1,2}, we denote &, the
prover algorithm, V; the verification predicate, ‘; the extractor, and §; the simulator.

Q.1 (AND proof) Construct a ¥ protocol £ = X; AND X, for the language defined by
R((x1,x2), (wi1,w2)) <= Ry(x1,w;) AND Ry(x2,w?7)
(OR proof) In the remaining of the exercise, we now let
R((x1,x2),w) <= R (x1,w) OR Ry (x2,w)
This predicate defines a new language L. We construct a new X-protocol £ =¥; OR X, for L by

- P((x1,x2),w;r1,r2) finds out i such that R;(x;,w) holds, sets j = 3 — i, then picks arandom e; € E
and runs Sj(x;,e;;r1) = (aj,ej,zj). Then, it runs P(x;,w;r2) = a; and yield (ai,az).
— Uponreceiving e, P((x1,x2),w,e;r1,r2) sets e; = e —e;, runs P(x;, w,e;;r2) = z; and yields (eq, e2,21,22).

The verification predicate is

e=e;+ey AND
V((x1,x2),(ar,az),e,(e1,e2,21,22)) <= < Vi(x1,a1,e1,21) AND
Va(x2,a2,€2,22)

Q.2 Show that ¥ is complete and works in polynomial time.
Q.3 Construct an extractor ‘£ for ¥ and show that is works, in polynomial time.
Q.4 Construct a simulator .S for X and show that is works, in polynomial time.



III Smashing SQUASH-0

We consider an access control protocol called SQUASH-0 in which a client and a server hold a secret
key K. In the protocol, the server sends a challenge C. The client must respond with

S = (stoi(C®K))* mod N

for a given modulus N, where stoi is a function transforming a bitstring into an integer by stoi(€) =0
for the zero-length bitstring €, and

stoi(b||s) = b+ 2 x stoi(s)

for any bit b € {0, 1} and any bitstring s. By convention, the least significant bit has position 0. We
further assume that N is larger than K and C.

Q.1

Q.2

Q.3

Q4

Let ¢; be —1 raised to the power of the bit position i in C. Let k; be —1 raised to the power of the
bit position 7 in K.
Show that

21w (2 —1)2
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where / is the bitlength of N.
In what follows, we assume that N = 2/ — 1. Deduce

ij

1 L.
S= (422’+jCiCjkikj> mod N

Deduce that by using about ¢? challenges and their responses, an adversary could recover K by
solving a linear system of O(¢?) equations with @ unknowns.

As an example, consider £ = 1024. What is the complexity of the attack?

Hint: define x; ; = kik;.

Given a function @ mapping a bitstring of length d to a real number, we define

o(V)=Y.(=1)"o(x)

X

where - denotes the dot product between two bitstrings and the sum goes on all bitstrings x of
length d. For the function @(x) = (—1)*U, show that $(V) =27 if V = U and ®(V) = 0 otherwise.
We write it (V) = 291y _y.

In a chosen challenge attack, an adversary creates d challenges C', ... ,C? and all linear combina-
tions of these challenges. Namely, C(x; ...x;) =x;C ey ... @x,C%. Given a d-bit vector x, we thus
define C(x). We write x as an argument of S and ¢; as well so that S(x) is the response to challenge
C(x) and c¢;(x) is —1 raised to the power of the bit position i in C(x). Let U; be the d-bit vector
consisting of the bit at position i of C', ..., C?.

Deduce that

~ 1 L
S(v)= 122d+l+1kikjlvzyi@Uj
2¥)

Hint: observe ¢;(x) = (—1)*Y and use Q.1 then Q.3.



Q.5 With the same notations, we assume that the function mapping a non-ordered pair {i, j} with i # j

to U; ® U; behaves like a random function. We further assume that d is pretty small. For each V,
estimate the number of non-ordered pairs {i, j} with i # j such that V =U; & U;.

Deduce that we get 2¢ equations modulo N with £(¢ —1)27¢~! unknowns «;, ;j on average taking
values in {—1,+1}.

Q.6 We take d = 2log, ¢ and solve each equation by exhaustive search. Deduce a chosen-challenge

attack to break the algorithm.
How many chosen challenges does it use, asymptotically?
What is its complexity?

IV PIF Implies PAF

We consider a function family F, taking inputs of length A, making outputs of length A, and where the
key k is also of length A. We consider the two following games:

Game PIF(4,1%): Game PAF(4,1%):
1: pick some random coins k of length A 1: pick some random coins k of length A
2: pick p 2: pick p
3: run 4(p) = x 3: pick a random x of length A
4: if |x| # A, output O and stop 4: compute y = Fy(x)
5: pick a random bit b 5: run 4(y;p) — X’
6: if b =0 then 6: output 1,
7:  compute y = Fj(x)
8: else
9:  pick a random y of A bits
10: end if

—_ =
N —

: run 4(y;p) — V'
: output bd b @1

We say that Fy is PIF secure (resp. PAF-secure) if for all polynomially bounded A4, we have that
Pr[PIF(A4,1*) = 1] — ] (resp. Pr[PAF(,1*) = 1)) is a negligible function in terms of A.

Q.

Show that if F; is PIF-secure, then it is PAF-secure.

Hint: based on a PAF-adversary 4 and some coins p’ = //||p||b”, define A'(p’) = x picked at
random from #’ then A’ (y,p’) = 1 if A(y;p) = x and 4'(y,p’) = b” otherwise. By considering 4’
as a PIF-adversary, look at the link between Pr[PIF(4’,1*) = 1] — { and Pr[PAF(4,1*) = 1].



