Advanced Cryptography — Final Exam

Serge Vaudenay

20.6.2011

- duration: 3h00
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- readability and style of writing will be part of the grade
- it is unlikely we will answer any technical question during the exam
- do not forget to put your full name on your copy!

I Σ -Protocol for \mathcal{P}

We consider an alphabet Z, a polynomial P, and a predicate R. We assume that R can be computed in polynomial time. Given $x \in Z^*$, we let

$$R_x = \{ w \in Z^*; R(x, w) \text{ and } |w| \le P(|x|) \}$$

where |x| denotes the length of x. We define the language L from R by

$$L = \{x \in Z^*; R_x \neq \emptyset\}$$

Q. In this question, we assume that there is an algorithm \mathcal{A} such that for any $x \in L$, we obtain $\mathcal{A}(x) \in R_x$ and that for any $x \in Z^*$, the running time of $\mathcal{A}(x)$ is bounded by P(|x|). Construct a Σ -protocol for L. Carefully specify all protocol elements and prove all properties which must be satisfied.

II OR Proof

Let $Z = \{0,1\}$ be an alphabet. We consider two Σ -protocols Σ_1 and Σ_2 for two languages L_1 and L_2 over the alphabet Z defined by two predicates R_1 and R_2 . We assume that Σ_1 and Σ_2 use the same challenge set E which is given a group structure with a law +. For Σ_i , $i \in \{1,2\}$, we denote \mathcal{P}_i the prover algorithm, V_i the verification predicate, \mathcal{E}_i the extractor, and \mathcal{S}_i the simulator.

Q.1 (**AND proof**) Construct a Σ protocol $\Sigma = \Sigma_1$ AND Σ_2 for the language defined by

$$R((x_1,x_2),(w_1,w_2)) \iff R_1(x_1,w_1) \text{ AND } R_2(x_2,w_2)$$

(**OR proof**) In the remaining of the exercise, we now let

$$R((x_1,x_2),w) \iff R_1(x_1,w) \text{ OR } R_2(x_2,w)$$

This predicate defines a new language L. We construct a new Σ -protocol $\Sigma = \Sigma_i$ OR Σ_2 for L by

- $\mathcal{P}((x_1, x_2), w; r_1, r_2)$ finds out i such that $R_i(x_i, w)$ holds, sets j = 3 i, then picks a random $e_j \in E$ and runs $S_i(x_i, e_j; r_1) = (a_i, e_j, z_j)$. Then, it runs $\mathcal{P}(x_i, w; r_2) = a_i$ and yield (a_1, a_2) .
- Upon receiving e, $\mathcal{P}((x_1,x_2), w, e; r_1, r_2)$ sets $e_i = e e_j$, runs $\mathcal{P}(x_i, w, e_i; r_2) = z_i$ and yields (e_1, e_2, z_1, z_2) .

The verification predicate is

$$V((x_1,x_2),(a_1,a_2),e,(e_1,e_2,z_1,z_2)) \Longleftrightarrow \begin{cases} e=e_1+e_2 \text{ AND} \\ V_1(x_1,a_1,e_1,z_1) \text{ AND} \\ V_2(x_2,a_2,e_2,z_2) \end{cases}$$

- **Q.2** Show that Σ is complete and works in polynomial time.
- **Q.3** Construct an extractor \mathcal{E} for Σ and show that is works, in polynomial time.
- **Q.4** Construct a simulator S for Σ and show that is works, in polynomial time.

III Smashing SQUASH-0

We consider an access control protocol called SQUASH-0 in which a client and a server hold a secret key *K*. In the protocol, the server sends a challenge *C*. The client must respond with

$$S = (\mathsf{stoi}(C \oplus K))^2 \bmod N$$

for a given modulus N, where stoi is a function transforming a bitstring into an integer by $stoi(\varepsilon) = 0$ for the zero-length bitstring ε , and

$$\mathsf{stoi}(b||s) = b + 2 \times \mathsf{stoi}(s)$$

for any bit $b \in \{0,1\}$ and any bitstring s. By convention, the least significant bit has position 0. We further assume that N is larger than K and C.

Q.1 Let c_i be -1 raised to the power of the bit position i in C. Let k_i be -1 raised to the power of the bit position i in K.

Show that

$$S = \left(\frac{1}{4} \sum_{i,j} 2^{i+j} c_i c_j k_i k_j - \frac{2^{\ell} - 1}{2} \sum_i 2^i c_i k_i + \frac{(2^{\ell} - 1)^2}{4}\right) \bmod N$$

where ℓ is the bitlength of N.

In what follows, we assume that $N = 2^{\ell} - 1$. Deduce

$$S = \left(\frac{1}{4} \sum_{i,j} 2^{i+j} c_i c_j k_i k_j\right) \bmod N$$

Q.2 Deduce that by using about ℓ^2 challenges and their responses, an adversary could recover K by solving a linear system of $O(\ell^2)$ equations with $\frac{\ell(\ell-1)}{2}$ unknowns.

As an example, consider $\ell = 1024$. What is the complexity of the attack?

Hint: define $\kappa_{i,j} = k_i k_j$.

Q.3 Given a function φ mapping a bitstring of length d to a real number, we define

$$\hat{\varphi}(V) = \sum_{x} (-1)^{x \cdot V} \varphi(x)$$

where \cdot denotes the dot product between two bitstrings and the sum goes on all bitstrings x of length d. For the function $\varphi(x) = (-1)^{x \cdot U}$, show that $\hat{\varphi}(V) = 2^d$ if V = U and $\hat{\varphi}(V) = 0$ otherwise. We write it $\hat{\varphi}(V) = 2^d 1_{V = U}$.

Q.4 In a chosen challenge attack, an adversary creates d challenges C^1, \ldots, C^d and all linear combinations of these challenges. Namely, $C(x_1 \ldots x_d) = x_1 C^1 \oplus \cdots \oplus x_d C^d$. Given a d-bit vector x, we thus define C(x). We write x as an argument of S and c_i as well so that S(x) is the response to challenge C(x) and $c_i(x)$ is -1 raised to the power of the bit position i in C(x). Let U_i be the d-bit vector consisting of the bit at position i of C^1, \ldots, C^d .

Deduce that

$$\hat{S}(V) = \frac{1}{4} \sum_{i,j} 2^{d+i+j} k_i k_j 1_{V = U_i \oplus U_j}$$

Hint: observe $c_i(x) = (-1)^{x \cdot U_i}$ and use Q.1 then Q.3.

- **Q.5** With the same notations, we assume that the function mapping a non-ordered pair $\{i, j\}$ with $i \neq j$ to $U_i \oplus U_j$ behaves like a random function. We further assume that d is pretty small. For each V, estimate the number of non-ordered pairs $\{i, j\}$ with $i \neq j$ such that $V = U_i \oplus U_j$. Deduce that we get 2^d equations modulo N with $\ell(\ell-1)2^{-d-1}$ unknowns $\kappa_{i,j}$ on average taking values in $\{-1, +1\}$.
- **Q.6** We take $d = 2\log_2 \ell$ and solve each equation by exhaustive search. Deduce a chosen-challenge attack to break the algorithm.

How many chosen challenges does it use, asymptotically? What is its complexity?

IV PIF Implies PAF

We consider a function family F_k taking inputs of length λ , making outputs of length λ , and where the key k is also of length λ . We consider the two following games:

```
Game \mathsf{PIF}(\mathcal{A}, 1^{\lambda}):

1: pick some random coins k of length \lambda

2: pick \rho

3: \mathsf{run} \, \mathcal{A}(\rho) \to x

4: if |x| \neq \lambda, output 0 and stop

5: pick a random bit b

6: if b = 0 then

7: compute y = F_k(x)

8: else

9: pick a random y of \lambda bits

10: end if

11: \mathsf{run} \, \mathcal{A}(y; \rho) \to b'

12: output b \oplus b' \oplus 1
```

Game PAF($\mathcal{A}, 1^{\lambda}$):

- 1: pick some random coins k of length λ
- 2: pick p
- 3: pick a random x of length λ
- 4: compute $y = F_k(x)$
- 5: run $\mathcal{A}(y; \mathbf{p}) \to x'$
- 6: output $1_{x=x'}$

We say that F_k is PIF-secure (resp. PAF-secure) if for all polynomially bounded \mathcal{A} , we have that $\Pr[\mathsf{PIF}(\mathcal{A},1^{\lambda})=1]-\frac{1}{2}$ (resp. $\Pr[\mathsf{PAF}(\mathcal{A},1^{\lambda})=1]$) is a negligible function in terms of λ .

Q. Show that if F_k is PIF-secure, then it is PAF-secure.

Hint: based on a PAF-adversary \mathcal{A} and some coins $\rho' = r' \|\rho\| b''$, define $\mathcal{A}'(\rho') = x$ picked at random from r' then $\mathcal{A}'(y,\rho') = 1$ if $\mathcal{A}(y,\rho) = x$ and $\mathcal{A}'(y,\rho') = b''$ otherwise. By considering \mathcal{A}' as a PIF-adversary, look at the link between $\Pr[\mathsf{PIF}(\mathcal{A}',1^{\lambda}) = 1] - \frac{1}{2}$ and $\Pr[\mathsf{PAF}(\mathcal{A},1^{\lambda}) = 1]$.