Advanced Cryptography - Final Exam

Solution

Serge Vaudenay

20.6.2011

I Σ-Protocol for \mathcal{P}

We consider an alphabet Z, a polynomial P, and a predicate R. We assume that R can be computed in polynomial time. Given $x \in Z^{*}$, we let

$$
R_{x}=\left\{w \in Z^{*} ; R(x, w) \text { and }|w| \leq P(|x|)\right\}
$$

where $|x|$ denotes the length of x. We define the language L from R by

$$
L=\left\{x \in Z^{*} ; R_{x} \neq \emptyset\right\}
$$

Q. In this question, we assume that there is an algorithm \mathcal{A} such that for any $x \in L$, we obtain $\mathcal{A}(x) \in$ R_{x} and that for any $x \in Z^{*}$, the running time of $\mathcal{A}(x)$ is bounded by $P(|x|)$.
Construct a Σ-protocol for L. Carefully specify all protocol elements and prove all properties which must be satisfied.

Let ε be a word of length 0 .

- We define $\mathcal{P}(x, w)=\varepsilon$ and $\mathcal{P}(x, w, e)=\varepsilon$.
- We take the set of challenges $E=\{\varepsilon\}$. We could actually take any set of challenges with polynomially bounded length.
- The verification algorithm $V(x, a, e, z)$ first computes $w=\mathcal{A}(x)$, then checks if $R(x, w)$ holds.
- Clearly, this protocol satisfies completeness ($x \in L$ is accepted by the verifier when the protocol is honestly run).
- Clearly, the algorithms run in polynomial time in terms of $|x|$.
- To define a polynomial time extractor based on some values $x, a, e, e^{\prime}, z, z^{\prime}$ such that $V(x, a, e, z)$ and $V\left(x, a, e^{\prime}, z^{\prime}\right)$ hold, and $e \neq e^{\prime}$, we simply compute $w=\mathcal{A}(x)$. Clearly, we obtain a polynomial-time extractor.
- To define a simulator $S(x, e)$, we just take $(a, z)=(\varepsilon, \varepsilon)$. Clearly,

$$
\operatorname{Pr}[S(x, e)=(a, z)]=\operatorname{Pr}[\mathcal{P}(x, w)=a, \mathcal{P}(x, w, e)=z]
$$

So, we obtain a polynomial-time simulator.
So, all properties of a Σ-protocol are satisfied.

II OR Proof

The exercise is inspired by Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols by Cramer, Damgård and Schoenmakers. Published in the proceedings of Crypto'94 pp. 174-187, LNCS vol. 839, Springer 1994.

Let $Z=\{0,1\}$ be an alphabet. We consider two Σ-protocols Σ_{1} and Σ_{2} for two languages L_{1} and L_{2} over the alphabet Z defined by two predicates R_{1} and R_{2}. We assume that Σ_{1} and Σ_{2} use the same challenge set E which is given a group structure with a law + . For $\Sigma_{i}, i \in\{1,2\}$, we denote \mathcal{P}_{i} the prover algorithm, V_{i} the verification predicate, \mathcal{E}_{i} the extractor, and \mathcal{S}_{i} the simulator.
Q. 1 (AND proof) Construct a Σ protocol $\Sigma=\Sigma_{1}$ AND Σ_{2} for the language defined by

$$
R\left(\left(x_{1}, x_{2}\right),\left(w_{1}, w_{2}\right)\right) \Longleftrightarrow R_{1}\left(x_{1}, w_{1}\right) \text { AND } R_{2}\left(x_{2}, w_{2}\right)
$$

> The prover and the verifier are simply defined by a parallel execution of Σ_{1} and Σ_{2} together with the same challenge. So are the extractor and the simulator.
> More precisely, $\mathcal{P}\left(\left(x_{1}, x_{2}\right),\left(w_{1}, w_{2}\right) ; r_{1}, r_{2}\right)$ runs $\mathscr{P}_{i}\left(x_{i}, w_{i} ; r_{i}\right)=a_{i}$ for $i=1,2$ and yield $\left(a_{1}, a_{2}\right)$. Uppon challenge $e \in E, \mathscr{P}\left(\left(x_{1}, x_{2}\right),\left(w_{1}, w_{2}\right), e ; r_{1}, r_{2}\right)$ runs $\mathscr{P}_{i}\left(x_{i}, w_{i}, e ; r_{i}\right)=z_{i}$ for $i=1,2$ and yield $\left(z_{1}, z_{2}\right)$. The verification holds $V\left(\left(x_{1}, x_{2}\right),\left(a_{1}, a_{2}\right), e,\left(z_{1}, z_{2}\right)\right)$ if and only if both $V_{i}\left(x_{i}, a_{i}, e, z_{i}\right)$ hold for $i=1,2$. The extractor $\mathcal{E}\left(\left(x_{1}, x_{2}\right),\left(a_{1}, a_{2}\right), e, e^{\prime},\left(z_{1}, z_{2}\right),\left(z_{1}^{\prime}, z_{2}^{\prime}\right)\right)$ runs $w_{i}=\mathcal{E}_{i}\left(x_{i}, a_{i}, e, e^{\prime}, z_{i}, z_{i}^{\prime}\right)$ for $i=1,2$ and yield $\left(w_{1}, w_{2}\right)$. The simulator $\mathcal{S}\left(\left(x_{1}, x_{2}\right), e\right)$ runs $\left(a_{i}, z_{i}\right)=S_{i}\left(x_{i}, e\right)$ for $i=1,2$ and yields $\left(\left(a_{1}, a_{2}\right),\left(z_{1}, z_{2}\right)\right)$.
> Note: i it important important to use the same challenge for both protocols in order to avoid troubles in the extraction.
(OR proof) In the remaining of the exercise, we now let

$$
R\left(\left(x_{1}, x_{2}\right), w\right) \Longleftrightarrow R_{1}\left(x_{1}, w\right) \text { OR } R_{2}\left(x_{2}, w\right)
$$

This predicate defines a new language L. We construct a new Σ-protocol $\Sigma=\Sigma_{i}$ OR Σ_{2} for L by

- $\mathcal{P}\left(\left(x_{1}, x_{2}\right), w ; r_{1}, r_{2}\right)$ finds out i such that $R_{i}\left(x_{i}, w\right)$ holds, sets $j=3-i$, then picks a random $e_{j} \in E$ and runs $\mathcal{S}_{j}\left(x_{j}, e_{j} ; r_{1}\right)=\left(a_{j}, e_{j}, z_{j}\right)$. Then, it runs $\mathcal{P}\left(x_{i}, w ; r_{2}\right)=a_{i}$ and yield $\left(a_{1}, a_{2}\right)$.
- Upon receiving $e, \mathcal{P}\left(\left(x_{1}, x_{2}\right), w, e ; r_{1}, r_{2}\right)$ sets $e_{i}=e-e_{j}$, runs $\mathcal{P}\left(x_{i}, w, e_{i} ; r_{2}\right)=z_{i}$ and yields $\left(e_{1}, e_{2}, z_{1}, z_{2}\right)$.

The verification predicate is

$$
V\left(\left(x_{1}, x_{2}\right),\left(a_{1}, a_{2}\right), e,\left(e_{1}, e_{2}, z_{1}, z_{2}\right)\right) \Longleftrightarrow\left\{\begin{array}{l}
e=e_{1}+e_{2} \text { AND } \\
V_{1}\left(x_{1}, a_{1}, e_{1}, z_{1}\right) \text { AND } \\
V_{2}\left(x_{2}, a_{2}, e_{2}, z_{2}\right)
\end{array}\right.
$$

Q. 2 Show that Σ is complete and works in polynomial time.

The protocol \mathcal{P} is a finite sequence of polynomial time operations or subroutines, so it is polynomial. Since V_{1} and V_{2} have a polynomially bounded complexity, so does V. We already know that E is polynomially samplable. So Σ works in polynomial time (except that we did not specify yet the extractor and the simulator).
If the protocols are honestly run, we have $S_{j}\left(x_{j}, e_{j}\right) \rightarrow\left(a_{j}, e_{j}, z_{j}\right)$. So, by the property of the simulator for Σ_{j}, we have that $V_{j}\left(x_{j}, a_{j}, e_{j}, z_{j}\right)$ holds. Since w is a correct witness for x_{i} in Σ_{i}, since $\mathcal{P}\left(x_{i}, w ; r_{2}\right)=a_{i}$ and $\mathcal{P}\left(x_{i}, w, e_{i} ; r_{2}\right)=z_{i}$, due to the completeness of Σ_{i} we have that $V_{i}\left(x_{i}, a_{i}, e_{i}, z_{i}\right)$ holds. Since we further have $e_{i}=e-e_{j}$, the last condition for $V\left(\left(x_{1}, x_{2}\right),\left(a_{1}, a_{2}\right), e,\left(e_{1}, e_{2}, z_{1}, z_{2}\right)\right)$ to hold is satisfied. So, Σ satisfies the completeness property of Σ-protocols.
Q. 3 Construct an extractor \mathcal{E} for Σ and show that is works, in polynomial time.

If $V\left(\left(x_{1}, x_{2}\right),\left(a_{1}, a_{2}\right), e,\left(e_{1}, e_{2}, z_{1}, z_{2}\right)\right)$ and $V\left(\left(x_{1}, x_{2}\right),\left(a_{1}, a_{2}\right), e^{\prime},\left(e_{1}^{\prime}, e_{2}^{\prime}, z_{1}^{\prime}, z_{2}^{\prime}\right)\right)$ hold with $e \neq e^{\prime}$, we must have either $e_{1} \neq e_{1}^{\prime}$ or $e_{2} \neq e_{2}^{\prime}$. Let assume that $e_{1} \neq e_{1}^{\prime}$. Then, we know that $V_{1}\left(x_{1}, a_{1}, e_{1}, z_{1}\right)$ and $V_{1}\left(x_{1}, a_{1}, e_{1}^{\prime}, z_{1}^{\prime}\right)$ hold. So, we can run the \mathcal{E}_{1} extractor on $\left(x_{1}, a_{1}, e_{1}, e_{1}^{\prime}, z_{1}, z_{1}^{\prime}\right)$ to extract a witness w for x_{1} in L_{1}. Clearly, w is also a witness for $\left(x_{1}, x_{2}\right)$ in L. The method is similar in the case $e_{2} \neq e_{2}^{\prime}$.
Clearly, we obtain a polynomially bounded extractor.
Q. 4 Construct a simulator \mathcal{S} for Σ and show that is works, in polynomial time.

Given $\left(x_{1}, x_{2}\right)$ and e, we pick a random e_{1} and let $e_{2}=e-e_{1}$. Then, we run $\mathcal{S}_{1}\left(x_{1}, e_{1}\right) \rightarrow$ $\left(a_{1}, e_{1}, z_{1}\right)$ and $S_{2}\left(x_{2}, e_{2}\right) \rightarrow\left(a_{2}, e_{2}, z_{2}\right)$. The output is $\left(\left(a_{1}, a_{2}\right), e,\left(e_{1}, e_{2}, z_{1}, z_{2}\right)\right)$. This defines our simulator S.
Clearly, this works in polynomial time.
We let $a=\left(a_{1}, a_{2}\right)$ and $z=\left(e_{1}, e_{2}, z_{1}, z_{2}\right)$. We have

$$
\operatorname{Pr}[\mathcal{S} \rightarrow a, e, z \mid e]=\sum_{e_{1}+e_{2}=e} \operatorname{Pr}\left[e_{1}\right] \operatorname{Pr}\left[\mathcal{S}_{1} \rightarrow a_{1}, e_{1}, z_{1} \mid e_{1}\right] \operatorname{Pr}\left[\mathcal{S}_{2} \rightarrow a_{2}, e_{2}, z_{2} \mid e_{2}\right]
$$

Since S_{1} and S_{2} are simulators for Σ_{1} and Σ_{2}, we have

$$
\operatorname{Pr}[\mathcal{S} \rightarrow a, e, z \mid e]=\sum_{e_{1}+e_{2}=e} \operatorname{Pr}\left[e_{j}\right] \operatorname{Pr}\left[\Sigma_{j} \rightarrow a_{j}, e_{j}, z_{j} \mid e_{j}\right] \operatorname{Pr}\left[\mathcal{S}_{i} \rightarrow a_{i}, e_{i}, z_{i} \mid e_{i}\right]
$$

for whatever pair (i, j) such that $\{i, j\}=\{1,2\}$. We let i be random defined by \mathcal{P}. Clearly, the above sum equals $\operatorname{Pr}[\Sigma \rightarrow a, e, z \mid e]$. So, \mathcal{S} satisfies the property of a simulator for Σ.

III Smashing SQUASH-0

The exercise is inspired by Smashing SQUASH-0 by Ouafi and Vaudenay. Published in the proceedings of Eurocrypt'09 pp. 300-312, LNCS vol. 5479, Springer 2009.

We consider an access control protocol called SQUASH-0 in which a client and a server hold a secret key K. In the protocol, the server sends a challenge C. The client must respond with

$$
S=(\operatorname{stoi}(C \oplus K))^{2} \bmod N
$$

for a given modulus N, where stoi is a function transforming a bitstring into an integer by $\operatorname{stoi}(\varepsilon)=0$ for the zero-length bitstring ε, and

$$
\operatorname{stoi}(b \| s)=b+2 \times \operatorname{stoi}(s)
$$

for any bit $b \in\{0,1\}$ and any bitstring s. By convention, the least significant bit has position 0 . We further assume that N is larger than K and C.
Q. 1 Let c_{i} be -1 raised to the power of the bit position i in C. Let k_{i} be -1 raised to the power of the bit position i in K.
Show that

$$
S=\left(\frac{1}{4} \sum_{i, j} 2^{i+j} c_{i} c_{j} k_{i} k_{j}-\frac{2^{\ell}-1}{2} \sum_{i} 2^{i} c_{i} k_{i}+\frac{\left(2^{\ell}-1\right)^{2}}{4}\right) \bmod N
$$

where ℓ is the bitlength of N.
The XOR of two bits in the ± 1 representation is obtained by a regular multiplication. The ± 1 representation of bits can be converted to a 0-1 representation by $x \mapsto \frac{1-x}{2}$. So,

$$
\operatorname{stoi}(C \oplus K)=\sum_{i} 2^{i} \frac{1-c_{i} k_{i}}{2}=\frac{2^{\ell}-1}{2}-\frac{1}{2} \sum_{i} 2^{i} c_{i} k_{i}
$$

By squaring it we obtain the result for S.
The SQUASH-0 proposal suggests to use Mersenne numbers for N. incidentally, we obtain $2^{\ell}-1=N$. We deduce

$$
S=\left(\frac{1}{4} \sum_{i, j} 2^{i+j} c_{i} c_{j} k_{i} k_{j}\right) \bmod N
$$

In what follows, we assume that $N=2^{\ell}-1$. Deduce

$$
S=\left(\frac{1}{4} \sum_{i, j} 2^{i+j} c_{i} c_{j} k_{i} k_{j}\right) \bmod N
$$

Q. 2 Deduce that by using about ℓ^{2} challenges and their responses, an adversary could recover K by solving a linear system of $O\left(\ell^{2}\right)$ equations with $\frac{\ell(\ell-1)}{2}$ unknowns.
As an example, consider $\ell=1024$. What is the complexity of the attack?
Hint: define $\kappa_{i, j}=k_{i} k_{j}$.

We let $\kappa_{i, j}=k_{i} k_{j}$ for $i<j$. For $i=j$, we have $k_{i} k_{j}=1$. For $i>j$, we have $k_{i} k_{j}=\kappa_{j, i}$. So, all $k_{i} k_{j}$ can be expressed in terms of κ 's. This way, the equation becomes linear. We have $\frac{(\ell(\ell-1)}{2}$ unknowns κ. So, by collecting enough equations (namely, about ℓ^{2}), we can solve the linear system. The complexity of such algorithm is essentially $O\left(\ell^{6}\right)$. For $\ell=2^{10}$, we need 2^{20} known challenges and we reach a complexity of 2^{60}, which is not practical.
Q. 3 Given a function φ mapping a bitstring of length d to a real number, we define

$$
\hat{\varphi}(V)=\sum_{x}(-1)^{x \cdot V} \varphi(x)
$$

where • denotes the dot product between two bitstrings and the sum goes on all bitstrings x of length d. For the function $\varphi(x)=(-1)^{x \cdot U}$, show that $\hat{\varphi}(V)=2^{d}$ if $V=U$ and $\hat{\varphi}(V)=0$ otherwise. We write it $\hat{\varphi}(V)=2^{d} 1_{V=U}$.

$$
\text { We have } \quad \hat{\varphi}(V)=\sum_{x}(-1)^{x \cdot(U \oplus V)}
$$

When $U \oplus V \neq 0$, this is zero. When $U=V$, this is clearly 2^{d}.
Q. 4 In a chosen challenge attack, an adversary creates d challenges C^{1}, \ldots, C^{d} and all linear combinations of these challenges. Namely, $C\left(x_{1} \ldots x_{d}\right)=x_{1} C^{1} \oplus \cdots \oplus x_{d} C^{d}$. Given a d-bit vector x, we thus define $C(x)$. We write x as an argument of S and c_{i} as well so that $S(x)$ is the response to challenge $C(x)$ and $c_{i}(x)$ is -1 raised to the power of the bit position i in $C(x)$. Let U_{i} be the d-bit vector consisting of the bit at position i of C^{1}, \ldots, C^{d}.
Deduce that

$$
\hat{S}(V)=\frac{1}{4} \sum_{i, j} 2^{d+i+j} k_{i} k_{j} 1_{V=U_{i} \oplus U_{j}}
$$

Hint: observe $c_{i}(x)=(-1)^{x \cdot U_{i}}$ and use Q. 1 then Q.3.
The bit at position i of $C(x)$ is clearly $x \cdot U_{i}$. So,

$$
c_{i}(x)=(-1)^{x \cdot U_{i}}
$$

We now use Q.1. By the definition of \hat{S}, we have

$$
\hat{S}(V)=\sum_{x}(-1)^{x \cdot V}\left(\frac{1}{4} \sum_{i, j} 2^{i+j} c_{i}(x) c_{j}(x) k_{i} k_{j}\right) \bmod N
$$

We can now use our observation and permute the two sums and obtain

$$
\hat{S}(V)=\frac{1}{4} \sum_{i, j} 2^{i+j} k_{i} k_{j} \sum_{x}(-1)^{x \cdot\left(V \oplus U_{i} \oplus U_{j}\right)}
$$

We can then use Q.3.
Q. 5 With the same notations, we assume that the function mapping a non-ordered pair $\{i, j\}$ with $i \neq j$ to $U_{i} \oplus U_{j}$ behaves like a random function. We further assume that d is pretty small. For each V, estimate the number of non-ordered pairs $\{i, j\}$ with $i \neq j$ such that $V=U_{i} \oplus U_{j}$.
Deduce that we get 2^{d} equations modulo N with $\ell(\ell-1) 2^{-d-1}$ unknowns $\kappa_{i, j}$ on average taking values in $\{-1,+1\}$.

We have $\frac{\ell(\ell-1)}{2}$ non-ordered pairs $\{i, j\}$ with $i \neq j$. The vector $U_{i} \oplus U_{j}$ takes values in a set of 2^{d} elements. So, each V has (on average) $\ell(\ell-1) 2^{-d-1}$ pairs. Therefore, each equation $\hat{S}(V)$ uses this amount of unknowns $\kappa_{i, j}=k_{i} k_{j}$.
Q. 6 We take $d=2 \log _{2} \ell$ and solve each equation by exhaustive search. Deduce a chosen-challenge attack to break the algorithm.
How many chosen challenges does it use, asymptotically?
What is its complexity?
With $d=2 \log _{2} \ell$, each equation has $\frac{1}{2}$ unknown on average. So, exhaustive search works in constant time. We just solve $O\left(\ell^{2}\right)$ equations using $O\left(\ell^{2}\right)$ chosen challenges.
1: pick C^{1}, \ldots, C^{d}
2. for each x, define $C(x)$ and get $S(x)$

3: do an FFT transform on S to get the table \hat{S}
4: for each V, make an exhaustive search on the expressed $\kappa_{i, j}= \pm 1$ in $\hat{S}(V)$ to recover the к's
5: pick k_{1} at random and infer k_{i} from $\kappa_{1, i}$
The FFT complexity is $O\left(d 2^{d}\right)$. So, the overall complexity is $O\left(\ell^{2} \log \ell\right)$. This is much better than $O\left(\ell^{6}\right)$.

IV PIF Implies PAF

We consider a function family F_{k} taking inputs of length λ, making outputs of length λ, and where the key k is also of length λ. We consider the two following games:

```
Game \(\operatorname{PIF}\left(\mathcal{A}, 1^{\lambda}\right)\) :
    pick some random coins \(k\) of length \(\lambda\)
    pick \(\rho\)
    run \(\mathcal{A}(\rho) \rightarrow x\)
    if \(|x| \neq \lambda\), output 0 and stop
    pick a random bit \(b\)
    if \(b=0\) then
        compute \(y=F_{k}(x)\)
    else
        pick a random \(y\) of \(\lambda\) bits
    end if
    run \(\mathcal{A}(y ; \rho) \rightarrow b^{\prime}\)
    output \(b \oplus b^{\prime} \oplus 1\)
```

Game $\operatorname{PAF}\left(\mathcal{A}, 1^{\lambda}\right)$:
1: pick some random coins k of length λ
pick ρ
: pick a random x of length λ
compute $y=F_{k}(x)$
run $\mathcal{A}(y ; \rho) \rightarrow x^{\prime}$
output $1_{x=x^{\prime}}$

We say that F_{k} is PIF-secure (resp. PAF-secure) if for all polynomially bounded \mathcal{A}, we have that $\operatorname{Pr}\left[\operatorname{PIF}\left(\mathcal{A}, 1^{\lambda}\right)=1\right]-\frac{1}{2}\left(\right.$ resp. $\left.\operatorname{Pr}\left[\operatorname{PAF}\left(\mathcal{A}, 1^{\lambda}\right)=1\right]\right)$ is a negligible function in terms of λ.
Q. Show that if F_{k} is PIF-secure, then it is PAF-secure.

Hint: based on a PAF-adversary \mathcal{A} and some coins $\rho^{\prime}=r^{\prime}\|\rho\| b^{\prime \prime}$, define $\mathcal{A}^{\prime}\left(\rho^{\prime}\right)=x$ picked at random from r^{\prime} then $\mathcal{A}^{\prime}\left(y, \rho^{\prime}\right)=1$ if $\mathcal{A}(y ; \rho)=x$ and $\mathcal{A}^{\prime}\left(y, \rho^{\prime}\right)=b^{\prime \prime}$ otherwise. By considering \mathcal{A}^{\prime} as a PIF-adversary, look at the link between $\operatorname{Pr}\left[\operatorname{PIF}\left(\mathcal{A}^{\prime}, 1^{\lambda}\right)=1\right]-\frac{1}{2}$ and $\operatorname{Pr}\left[\operatorname{PAF}\left(\mathcal{A}, 1^{\lambda}\right)=1\right]$.

Consider an adversary \mathcal{A} who is polynomially bounded. We want to show that $p=$ $\operatorname{Pr}\left[\operatorname{PAF}\left(\mathcal{A}, 1^{\lambda}\right)=1\right]$ is negligible.
For this, we define the adversary \mathcal{A}^{\prime} as follows: we let $\rho^{\prime}=r^{\prime}\|\rho\| b^{\prime \prime}$ and $\mathcal{A}^{\prime}\left(\rho^{\prime}\right)$ picks a random x using r^{\prime}. Then, $\mathcal{A}^{\prime}\left(y ; \rho^{\prime}\right)$ runs $\mathcal{A}(y ; \rho)=x^{\prime \prime}$. If $x=x^{\prime \prime}$, it answers 1 . Otherwise, it answers by $b^{\prime \prime}$.
When running the game $\operatorname{PIF}\left(\mathcal{A}^{\prime}, 1^{\lambda}\right)$, in the $b=0$ case, we have $x=x^{\prime \prime}$ with probability p and \mathcal{A}^{\prime} never answers 0 . We have $x \neq x^{\prime \prime}$ with probability $1-p$ and \mathcal{A}^{\prime} answers 0 with probability $\frac{1}{2}$. So, \mathcal{A}^{\prime} answers 0 with probability $\frac{1-p}{2}$. So,

$$
\operatorname{Pr}\left[\operatorname{PIF}\left(\mathscr{A}^{\prime}, 1^{\lambda}\right)=1 \mid b=0\right]=\frac{1-p}{2}
$$

When $b=1, \mathcal{A}(y ; \rho)$ has no information about x, so x is independent from $x^{\prime \prime}$ and we have $\operatorname{Pr}\left[x=x^{\prime \prime}\right]=2^{-\lambda}$. Thus,

$$
\operatorname{Pr}\left[\operatorname{PIF}\left(\mathcal{A}^{\prime}, 1^{\lambda}\right)=1 \mid b=1\right]=2^{-\lambda}+\frac{1-2^{-\lambda}}{2}
$$

Finally, we have

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{PIF}\left(\mathfrak{A}^{\prime}, 1^{\lambda}\right)=1\right]-\frac{1}{2} & =\frac{1}{2}\left(\frac{1-p}{2}+2^{-\lambda}+\frac{1-2^{-\lambda}}{2}\right)-\frac{1}{2} \\
& =-\frac{p}{4}+\frac{2^{-\lambda}}{4}
\end{aligned}
$$

Since F_{k} is PIF-secure, we know that $\operatorname{Pr}\left[\operatorname{PIF}\left(\mathcal{A}^{\prime}, 1^{\lambda}\right)=1\right]-\frac{1}{2}$ must be negligible. Thus, $-\frac{p}{4}+\frac{2^{-\lambda}}{4}$ is negligible. Since $\frac{2^{-\lambda}}{4}$ is negligible, we obtain that $\frac{p}{4}$ is negligible. So, p is negligible.

