
Advanced Cryptography — Final Exam
Solution

Serge Vaudenay

20.6.2011

I Σ-Protocol for P

We consider an alphabet Z, a polynomial P, and a predicate R. We assume that R can be computed in
polynomial time. Given x ∈ Z∗, we let

Rx = {w ∈ Z∗;R(x,w) and |w| ≤ P(|x|)}

where |x| denotes the length of x. We define the language L from R by

L = {x ∈ Z∗;Rx ̸= /0}

Q. In this question, we assume that there is an algorithm A such that for any x ∈ L, we obtain A(x) ∈
Rx and that for any x ∈ Z∗, the running time of A(x) is bounded by P(|x|).
Construct a Σ-protocol for L. Carefully specify all protocol elements and prove all properties
which must be satisfied.

Let ε be a word of length 0.
– We define P (x,w) = ε and P (x,w,e) = ε.
– We take the set of challenges E = {ε}. We could actually take any set of challenges with

polynomially bounded length.
– The verification algorithm V (x,a,e,z) first computes w = A(x), then checks if R(x,w)

holds.
– Clearly, this protocol satisfies completeness (x ∈ L is accepted by the verifier when the

protocol is honestly run).
– Clearly, the algorithms run in polynomial time in terms of |x|.
– To define a polynomial time extractor based on some values x,a,e,e′,z,z′ such that

V (x,a,e,z) and V (x,a,e′,z′) hold, and e ̸= e′, we simply compute w = A(x). Clearly, we
obtain a polynomial-time extractor.

– To define a simulator S(x,e), we just take (a,z) = (ε,ε). Clearly,

Pr[S(x,e) = (a,z)] = Pr[P (x,w) = a,P (x,w,e) = z]

So, we obtain a polynomial-time simulator.
So, all properties of a Σ-protocol are satisfied.

II OR Proof

The exercise is inspired by Proof of Partial Knowledge and Simplified Design of Witness
Hiding Protocols by Cramer, Damgård and Schoenmakers. Published in the proceedings of
Crypto’94 pp. 174–187, LNCS vol. 839, Springer 1994.

Let Z = {0,1} be an alphabet. We consider two Σ-protocols Σ1 and Σ2 for two languages L1 and L2
over the alphabet Z defined by two predicates R1 and R2. We assume that Σ1 and Σ2 use the same
challenge set E which is given a group structure with a law +. For Σi, i ∈ {1,2}, we denote Pi the
prover algorithm, Vi the verification predicate, Ei the extractor, and Si the simulator.

Q.1 (AND proof) Construct a Σ protocol Σ = Σ1 AND Σ2 for the language defined by

R((x1,x2),(w1,w2))⇐⇒ R1(x1,w1) AND R2(x2,w2)

The prover and the verifier are simply defined by a parallel execution of Σ1 and Σ2 together
with the same challenge. So are the extractor and the simulator.
More precisely, P ((x1,x2),(w1,w2);r1,r2) runs Pi(xi,wi;ri) = ai for i = 1,2 and yield
(a1,a2). Uppon challenge e ∈ E, P ((x1,x2),(w1,w2),e;r1,r2) runs Pi(xi,wi,e;ri) = zi for
i = 1,2 and yield (z1,z2). The verification holds V ((x1,x2),(a1,a2),e,(z1,z2)) if and only if
both Vi(xi,ai,e,zi) hold for i = 1,2. The extractor E((x1,x2),(a1,a2),e,e′,(z1,z2),(z′1,z

′
2))

runs wi = Ei(xi,ai,e,e′,zi,z′i) for i = 1,2 and yield (w1,w2). The simulator S((x1,x2),e)
runs (ai,zi) = Si(xi,e) for i = 1,2 and yields ((a1,a2),(z1,z2)).
Note: it is important to use the same challenge for both protocols in order to avoid troubles
in the extraction.

(OR proof) In the remaining of the exercise, we now let

R((x1,x2),w)⇐⇒ R1(x1,w) OR R2(x2,w)

This predicate defines a new language L. We construct a new Σ-protocol Σ = Σi OR Σ2 for L by

– P ((x1,x2),w;r1,r2) finds out i such that Ri(xi,w) holds, sets j = 3− i, then picks a random e j ∈ E
and runs S j(x j,e j;r1) = (a j,e j,z j). Then, it runs P (xi,w;r2) = ai and yield (a1,a2).

– Upon receiving e, P ((x1,x2),w,e;r1,r2) sets ei = e−e j, runs P (xi,w,ei;r2)= zi and yields (e1,e2,z1,z2).

The verification predicate is

V ((x1,x2),(a1,a2),e,(e1,e2,z1,z2))⇐⇒


e = e1 + e2 AND
V1(x1,a1,e1,z1) AND
V2(x2,a2,e2,z2)

Q.2 Show that Σ is complete and works in polynomial time.

The protocol P is a finite sequence of polynomial time operations or subroutines, so it is
polynomial. Since V1 and V2 have a polynomially bounded complexity, so does V . We already
know that E is polynomially samplable. So Σ works in polynomial time (except that we did
not specify yet the extractor and the simulator).
If the protocols are honestly run, we have S j(x j,e j) → (a j,e j,z j). So, by the property of
the simulator for Σ j, we have that Vj(x j,a j,e j,z j) holds. Since w is a correct witness
for xi in Σi, since P (xi,w;r2) = ai and P (xi,w,ei;r2) = zi, due to the completeness of Σi

we have that Vi(xi,ai,ei,zi) holds. Since we further have ei = e − e j, the last condition
for V ((x1,x2),(a1,a2),e,(e1,e2,z1,z2)) to hold is satisfied. So, Σ satisfies the completeness
property of Σ-protocols.

Q.3 Construct an extractor E for Σ and show that is works, in polynomial time.

If V ((x1,x2),(a1,a2),e,(e1,e2,z1,z2)) and V ((x1,x2),(a1,a2),e′,(e′1,e
′
2,z

′
1,z

′
2)) hold with

e ̸= e′, we must have either e1 ̸= e′1 or e2 ̸= e′2. Let assume that e1 ̸= e′1. Then, we
know that V1(x1,a1,e1,z1) and V1(x1,a1,e′1,z

′
1) hold. So, we can run the E1 extractor on

(x1,a1,e1,e′1,z1,z′1) to extract a witness w for x1 in L1. Clearly, w is also a witness for
(x1,x2) in L. The method is similar in the case e2 ̸= e′2.
Clearly, we obtain a polynomially bounded extractor.

Q.4 Construct a simulator S for Σ and show that is works, in polynomial time.

Given (x1,x2) and e, we pick a random e1 and let e2 = e− e1. Then, we run S1(x1,e1) →
(a1,e1,z1) and S2(x2,e2)→ (a2,e2,z2). The output is ((a1,a2),e,(e1,e2,z1,z2)). This defines
our simulator S .
Clearly, this works in polynomial time.
We let a = (a1,a2) and z = (e1,e2,z1,z2). We have

Pr[S → a,e,z|e] = ∑
e1+e2=e

Pr[e1]Pr[S1 → a1,e1,z1|e1]Pr[S2 → a2,e2,z2|e2]

Since S1 and S2 are simulators for Σ1 and Σ2, we have

Pr[S → a,e,z|e] = ∑
e1+e2=e

Pr[e j]Pr[Σ j → a j,e j,z j|e j]Pr[Si → ai,ei,zi|ei]

for whatever pair (i, j) such that {i, j} = {1,2}. We let i be random defined by P . Clearly,
the above sum equals Pr[Σ → a,e,z|e]. So, S satisfies the property of a simulator for Σ.

III Smashing SQUASH-0

The exercise is inspired by Smashing SQUASH-0 by Ouafi and Vaudenay. Published in the
proceedings of Eurocrypt’09 pp. 300–312, LNCS vol. 5479, Springer 2009.

We consider an access control protocol called SQUASH-0 in which a client and a server hold a secret
key K. In the protocol, the server sends a challenge C. The client must respond with

S = (stoi(C⊕K))2 mod N

for a given modulus N, where stoi is a function transforming a bitstring into an integer by stoi(ε) = 0
for the zero-length bitstring ε, and

stoi(b∥s) = b+2× stoi(s)

for any bit b ∈ {0,1} and any bitstring s. By convention, the least significant bit has position 0. We
further assume that N is larger than K and C.

Q.1 Let ci be −1 raised to the power of the bit position i in C. Let ki be −1 raised to the power of the
bit position i in K.
Show that

S =

(
1
4 ∑

i, j
2i+ jcic jkik j −

2ℓ−1
2 ∑

i
2iciki +

(2ℓ−1)2

4

)
mod N

where ℓ is the bitlength of N.

The XOR of two bits in the ±1 representation is obtained by a regular multiplication. The
±1 representation of bits can be converted to a 0-1 representation by x 7→ 1−x

2 . So,

stoi(C⊕K) = ∑
i

2i 1− ciki

2
=

2ℓ−1
2

− 1
2 ∑

i
2iciki

By squaring it we obtain the result for S.
The SQUASH-0 proposal suggests to use Mersenne numbers for N. incidentally, we obtain
2ℓ−1 = N. We deduce

S =

(
1
4 ∑

i, j
2i+ jcic jkik j

)
mod N

In what follows, we assume that N = 2ℓ−1. Deduce

S =

(
1
4 ∑

i, j
2i+ jcic jkik j

)
mod N

Q.2 Deduce that by using about ℓ2 challenges and their responses, an adversary could recover K by
solving a linear system of O(ℓ2) equations with ℓ(ℓ−1)

2 unknowns.
As an example, consider ℓ= 1024. What is the complexity of the attack?
Hint: define κi, j = kik j.

We let κi, j = kik j for i < j. For i = j, we have kik j = 1. For i > j, we have kik j = κ j,i. So,
all kik j can be expressed in terms of κ’s. This way, the equation becomes linear. We have
(ℓ(ℓ−1)

2 unknowns κ. So, by collecting enough equations (namely, about ℓ2), we can solve the
linear system. The complexity of such algorithm is essentially O(ℓ6). For ℓ = 210, we need
220 known challenges and we reach a complexity of 260, which is not practical.

Q.3 Given a function φ mapping a bitstring of length d to a real number, we define

φ̂(V) = ∑
x
(−1)x·V φ(x)

where · denotes the dot product between two bitstrings and the sum goes on all bitstrings x of
length d. For the function φ(x) = (−1)x·U , show that φ̂(V) = 2d if V =U and φ̂(V) = 0 otherwise.
We write it φ̂(V) = 2d1V=U .

We have
φ̂(V) = ∑

x
(−1)x·(U⊕V)

When U ⊕V ̸= 0, this is zero. When U =V , this is clearly 2d .

Q.4 In a chosen challenge attack, an adversary creates d challenges C1, . . . ,Cd and all linear combina-
tions of these challenges. Namely, C(x1 . . .xd) = x1C1⊕·· ·⊕xdCd . Given a d-bit vector x, we thus
define C(x). We write x as an argument of S and ci as well so that S(x) is the response to challenge
C(x) and ci(x) is −1 raised to the power of the bit position i in C(x). Let Ui be the d-bit vector
consisting of the bit at position i of C1, . . . ,Cd .
Deduce that

Ŝ(V) =
1
4 ∑

i, j
2d+i+ jkik j1V=Ui⊕U j

Hint: observe ci(x) = (−1)x·Ui and use Q.1 then Q.3.

The bit at position i of C(x) is clearly x ·Ui. So,

ci(x) = (−1)x·Ui

We now use Q.1. By the definition of Ŝ, we have

Ŝ(V) = ∑
x
(−1)x·V

(
1
4 ∑

i, j
2i+ jci(x)c j(x)kik j

)
mod N

We can now use our observation and permute the two sums and obtain

Ŝ(V) =
1
4 ∑

i, j
2i+ jkik j ∑

x
(−1)x·(V⊕Ui⊕U j)

We can then use Q.3.

Q.5 With the same notations, we assume that the function mapping a non-ordered pair {i, j} with i ̸= j
to Ui ⊕U j behaves like a random function. We further assume that d is pretty small. For each V ,
estimate the number of non-ordered pairs {i, j} with i ̸= j such that V =Ui ⊕U j.
Deduce that we get 2d equations modulo N with ℓ(ℓ−1)2−d−1 unknowns κi, j on average taking
values in {−1,+1}.

We have ℓ(ℓ−1)
2 non-ordered pairs {i, j} with i ̸= j. The vector Ui ⊕U j takes values in a set

of 2d elements. So, each V has (on average) ℓ(ℓ−1)2−d−1 pairs. Therefore, each equation
Ŝ(V) uses this amount of unknowns κi, j = kik j.

Q.6 We take d = 2log2 ℓ and solve each equation by exhaustive search. Deduce a chosen-challenge
attack to break the algorithm.
How many chosen challenges does it use, asymptotically?
What is its complexity?

With d = 2log2 ℓ, each equation has 1
2 unknown on average. So, exhaustive search

works in constant time. We just solve O(ℓ2) equations using O(ℓ2) chosen chal-
lenges.

1: pick C1, . . . ,Cd

2: for each x, define C(x) and get S(x)
3: do an FFT transform on S to get the table Ŝ
4: for each V , make an exhaustive search on the expressed κi, j = ±1 in Ŝ(V) to recover

the κ’s
5: pick k1 at random and infer ki from κ1,i

The FFT complexity is O(d2d). So, the overall complexity is O(ℓ2 logℓ). This is much better
than O(ℓ6).

IV PIF Implies PAF

We consider a function family Fk taking inputs of length λ, making outputs of length λ, and where the
key k is also of length λ. We consider the two following games:

Game PIF(A ,1λ):
1: pick some random coins k of length λ
2: pick ρ
3: run A(ρ)→ x
4: if |x| ≠ λ, output 0 and stop
5: pick a random bit b
6: if b = 0 then
7: compute y = Fk(x)
8: else
9: pick a random y of λ bits

10: end if
11: run A(y;ρ)→ b′

12: output b⊕b′⊕1

Game PAF(A ,1λ):
1: pick some random coins k of length λ
2: pick ρ
3: pick a random x of length λ
4: compute y = Fk(x)
5: run A(y;ρ)→ x′

6: output 1x=x′

We say that Fk is PIF-secure (resp. PAF-secure) if for all polynomially bounded A , we have that
Pr[PIF(A ,1λ) = 1]− 1

2 (resp. Pr[PAF(A ,1λ) = 1]) is a negligible function in terms of λ.

Q. Show that if Fk is PIF-secure, then it is PAF-secure.

Hint: based on a PAF-adversary A and some coins ρ′ = r′∥ρ∥b′′, define A ′(ρ′) = x picked at
random from r′ then A ′(y,ρ′) = 1 if A(y;ρ) = x and A ′(y,ρ′) = b′′ otherwise. By considering A ′

as a PIF-adversary, look at the link between Pr[PIF(A ′,1λ) = 1]− 1
2 and Pr[PAF(A ,1λ) = 1].

Consider an adversary A who is polynomially bounded. We want to show that p =
Pr[PAF(A ,1λ) = 1] is negligible.
For this, we define the adversary A ′ as follows: we let ρ′ = r′∥ρ∥b′′ and A ′(ρ′) picks a
random x using r′. Then, A ′(y;ρ′) runs A(y;ρ) = x′′. If x = x′′, it answers 1. Otherwise, it
answers by b′′.
When running the game PIF(A ′,1λ), in the b = 0 case, we have x = x′′ with probability
p and A ′ never answers 0. We have x ̸= x′′ with probability 1− p and A ′ answers 0 with
probability 1

2 . So, A ′ answers 0 with probability 1−p
2 . So,

Pr[PIF(A ′,1λ) = 1|b = 0] =
1− p

2

When b = 1, A(y;ρ) has no information about x, so x is independent from x′′ and we have
Pr[x = x′′] = 2−λ. Thus,

Pr[PIF(A ′,1λ) = 1|b = 1] = 2−λ +
1−2−λ

2

Finally, we have

Pr[PIF(A ′,1λ) = 1]− 1
2
=

1
2

(
1− p

2
+2−λ +

1−2−λ

2

)
− 1

2

= − p
4
+

2−λ

4

Since Fk is PIF-secure, we know that Pr[PIF(A ′,1λ) = 1]− 1
2 must be negligible. Thus,

− p
4 + 2−λ

4 is negligible. Since 2−λ

4 is negligible, we obtain that p
4 is negligible. So, p is

negligible.

