
Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

3.5.2011

I A Crazy Cryptosystem

We define a new RSA-like public-key cryptosystem.

– For key generation, we generate two different prime numbers p and q of ℓ + 1 bits and
larger than 2ℓ, and make N = pq. Then, we pick a random α between 0 and p − 1 and
compute a = 1 + αp. The public key is (a,N) and the secret key is p.

– To encrypt a message x of at most ℓ bits, the sender computes y = xar mod N for a
random r.

– To decrypt y, the receiver computes x = y mod p.

Q.1 Give the complexity of the three algorithms. What is the advantage with respect to RSA?

Key generation takes O(ℓ4), like in RSA. Encryption takes O(ℓ3), the cost of the
exponentiation, like in RSA. Decryption takes O(ℓ2), the cost of a modular reduction.
Decryption is much faster than with RSA.

Q.2 Show that the correctness property of the cryptosystem is satisfied.

We have
y mod p = (xar mod N) mod p = (xar) mod p = x

since a mod p = 1 and x < p.

Q.3 Show that the decryption problem is as hard as the key recovery problem.

Assume we have a decryption oracle O. We can pick a random y and send it to O.
It will answer by x = y mod p. Then, we observe that p divides y − x. Since y is
random, so is y−x

p , and it is likely to be coprime with q. So, gcd(y − x,N) = p with
high probability. Therefore, we can do a key recovery by using O: decryption and key
recovery are equivalent.

Q.4 Show that key recovery is easy.

gcd(a− 1, N) = p.



II The DDH Problem and Bilinear Maps

We consider a (multiplicatively denoted) finite group G = ⟨g⟩ generated by some g element.
We assume that there is a map e from G×G to some group H such that

– #G = #H;
– h = e(g, g) generates H;
– for all a, b, c ∈ G, e(ab, c) = e(a, c)e(b, c).
– for all a, b, c ∈ G, e(a, bc) = e(a, b)e(a, c).

We call e a bilinear map.

Q.1 Show that for all integers x, y, we have e(gx, gy) = hxy.

We first show by induction on x that e(gx, b) = e(g, b)x. For x = 0, since a = 1.a,
we have that e(a, b) = e(1, b)e(a, b), so e(1, b) = 1. Then, assuming it holds for x−1,
since gx = gx−1.g, we have

e(gx, b) = e(gx−1, b)e(g, b) = e(g, b)x−1e(g, b) = e(g, b)x

So, we have e(gx, b) = e(g, b)x for all x ≥ 0. Since x is taken modulo the order of g,
it holds for any integer x.
Then, we show that e(a, gy) = e(a, g)y in the same way. We deduce that

e(gx, gy) = e(gx, g)y = (e(g, g)x)y = hxy

Q.2 Recall what is the Decisional Diffie-Hellman (DDH) problem in group G.

We consider any algorithm A fed with (U,X, Y,K) and which yields 0 or 1. We let

Adv(A)(s) = Pr
exp1

[A(U,X, Y,K) = 1] Pr
exp0

[A(U,X, Y,K) = 1]

where experiment expb consists of
– generate U ← Gen(1s)
– generate X,Y,K uniformly in ⟨g⟩
– if b = 1, replace K by the solution of DHP(U,X, Y )
where DHP(U,Ux, Uy) = Uxy.
The DDH problem consists of building a probabilistic polynomial-time algorithm A
such that Adv(A)(s) is not negligible.

Q.3 Show that the DDH problem in G is easy to solve when it is easy to compute e.

We define A(U,X, Y,K) = 1e(U,K)=e(X,Y ). Clearly, we have Prexp1 [A(U,X, Y,K) =

1] = 1. To evaluate Prexp0 [A(U,X, Y,K) = 1], we notice that A(gu, gx, gy, gk) = 1 if
and only if uk = xy, which shall occur with a probability of 1/#G. So, Adv(A)(s) =
1− 1

#G(s) which is certainly not negligible.

Q.4 Show that if the Discrete Logarithm problem is easy in H, then it is easy in G as well.

We observe that e(g, gx) = hx. So, if we can extract x from h and hx, then we can
extract x from g and gx by computing h = e(g, gx).



III Almost Bent Functions

The exercise is inspired by Links between differential and linear cryptanalysis by
Chabaud and Vaudenay. Published in the proceedings of Eurocrypt’94 pp. 356–365,
LNCS vol. 950, Springer 1995.

In this exercise, we consider a function f mapping n bits to n bits. We define two functions
DPf and LPf mapping two strings of n bits to a real number by

DPf (a, b) = Pr[f(X ⊕ a)⊕ f(X) = b]

LPf (α, β) = (2Pr[α ·X = β · f(X)]− 1)2

where X is uniformly distributed in {0, 1}n, ⊕ represents the bitwise exclusive-OR of two
bitstrings, and u · v represents the parity of the bitwise AND of two bitstrings, i.e.

(u1, . . . , un) · (v1, . . . , vn) = (u1v1 + · · ·+ unvn) mod 2

In this problem, we define

DPf
max = max

(a,b)̸=(0,0)
DPf (a, b)

LPf
max = max

(α,β) ̸=(0,0)
LPf (α, β)

Our purpose is to minimize DPf
max and LPf

max. We recall that DPf (a, b) and LPf (α, β) are
always in the [0, 1] interval, that DPf (0, b) ̸= 0 if and only if b = 0, that LPf (α, 0) ̸= 0 if and
only if α = 0, and that for all a,

∑
bDP

f (a, b) = 1. We further recall the two link formulas
between DPf and LPf coming from the Fourier transform:

DPf (a, b) = 2−n
∑
α,β

(−1)(a·α)⊕(b·β)LPf (α, β)

LPf (α, β) = 2−n
∑
a,b

(−1)(a·α)⊕(b·β)DPf (a, b)

Part 1: Preliminaries
Q.1a Show that for all β,

∑
α LP

f (α, β) = 1.

We have ∑
α

LPf (α, β) =
∑
α

2−n
∑
a,b

(−1)(a·α)⊕(b·β)DPf (a, b)

= 2−n
∑
a,b

DPf (a, b)(−1)b·β
∑
α

(−1)a·α

but the inner sum is nonzero only for a = 0, in which case it is 2n, so∑
α

LPf (α, β) =
∑
b

DPf (0, b)(−1)b·β

Now, DPf (0, b) is nonzero only for b = 0, so∑
α

LPf (α, β) = 1



Q.1b Show that
∑

a,b(DP
f (a, b))2 =

∑
α,β(LP

f (α, β))2.

Hint1:
∑

x

(∑
y g(x, y)

)2
=

∑
x,y,z g(x, y)g(x, z). Do not be afraid of big sums!

Hint2: remember your other classes on the Fourier transform.

We apply again the link formula. We have

∑
a,b

(
DPf (a, b)

)2
=

∑
a,b

2−n
∑
α,β

(−1)(a·α)⊕(b·β)LPf (α, β)

2

= 2−2n
∑
a,b

∑
α,β,γ,δ

(−1)(a·α)⊕(b·β)LPf (α, β)(−1)(a·γ)⊕(b·δ)LPf (γ, δ)

= 2−2n
∑

α,β,γ,δ

LPf (α, β)LPf (γ, δ)
∑
a,b

(−1)(a·(α⊕γ))⊕(b·(β⊕δ))

where the inner sum is nonzero only for α = γ and β = δ, in which case it is 22n,
so ∑

a,b

(
DPf (a, b)

)2
=

∑
α,β

(
LPf (α, β)

)2

Part 2: APN functions

Q.2a Show that DPf
max ≥ 21−n. In the case of an equality, we say that f is Almost Perfect

Nonlinear (APN).

Hint: First show that 2nDPf (a, b) is an even integer.

DPf (a, b) is 2−n times the number of x’s such that f(x ⊕ a) ⊕ f(x) = b. When x
satisfies this property, so does x ⊕ a. Hence, the number of x’s is even. Therefore,
DPf (a, b) is an even number divided by 2n. Since

∑
bDP

f (a, b) = 1, we can take
any a ̸= 0 and we deduce that there is at least one b such that DPf (a, b) ̸= 0. So,
DPf (a, b) ≥ 21−n with a ̸= 0 from which we deduce DPf

max ≥ 21−n.

Q.2b Show that f is an APN function if and only if for all a and b such that (a, b) ̸= (0, 0),
we have either DPf (a, b) = 21−n or DPf (a, b) = 0.

Since DPf (a, b) is an even integer divided by 2n and bounded by 21−n, it can only be
21−n or 0. The converse is trivial.

Part 3: AB functions

Q.3a Show that
∑

α

∑
β ̸=0

(
LPf (α, β)

)2
≥ 21−n(2n − 1).

Hint: use Q.1b and observe that (DPf (a, b))2 ≥ 21−nDPf (a, b)



In Q.1b, we have proven that∑
α,β

(
LPf (α, β)

)2
=

∑
a,b

(
DPf (a, b)

)2
So,∑

α

∑
β ̸=0

(
LPf (α, β)

)2
+

∑
α

(
LPf (α, 0)

)2
=

∑
a ̸=0

∑
b

(
DPf (a, b)

)2
+

∑
b

(
DPf (0, b)

)2
which leads to ∑

α

∑
β ̸=0

(
LPf (α, β)

)2
=

∑
a ̸=0

∑
b

(
DPf (a, b)

)2
Then, since (DPf (a, b))2 ≥ 21−nDPf (a, b), we obtain

∑
α

∑
β ̸=0

(
LPf (α, β)

)2
≥ 21−n

∑
a̸=0

∑
b

DPf (a, b) = 21−n(2n − 1)

Q.3b Show that LPf
max ≥

∑
α

∑
β ̸=0(LP

f (α,β))
2∑

α

∑
β ̸=0

LPf (α,β)
with equality if and only if for all α, β with

β ̸= 0, we have either LPf (α, β) = 0 or LPf (α, β) = LPf
max.

This is equivalent to show that
∑

α

∑
β ̸=0 LP

f (α, β)
(
LPf

max − LPf (α, β)
)
≥ 0 with

equality if and only if all terms in the sum are zero. Since all terms are positive, this
is trivial.

Q.3c Show that LPf
max ≥ 21−n. In the case of an equality, we say that f is Almost Bent

(AB).

The previous inequality in Q.3b together with the results of Q.3a and Q.1a turns into
LPf

max ≥ 21−n.

Q.3d Show that f is an AB function if and only if for all α and β such that (α, β) ̸= (0, 0),
we have either LPf (α, β) = 21−n or LPf (α, β) = 0.

If f is AB, then we have an equality case in the inequality of Q.3b. This leads to the
result. The other direction is trivial.

Q.3e Show that if f is an AB function, then it is APN as well.

If f is AB, then
∑

α

∑
β ̸=0

(
LPf (α, β)

)2
= 21−n(2n − 1). So, thanks to Q.1b,∑

a ̸=0

∑
b

(
DPf (a, b)

)2
= 21−n(2n − 1). Just like in Q.3b, we have DPf

max ≥∑
a ̸=0

∑
b(DPf (a,b))

2∑
a̸=0

∑
b
DPf (a,b)

which is equal to 21−n. So, f is APN.



IV Analyzing Two-Time Pad

We consider the Vernam cipher defined by EncK(X) = x ⊕ K, where the plaintext X and
the key K are two bitstrings of length n, independent random variables, and K is uniformly
distributed. We assume that X comes from a biased source with a given distribution. The
purpose of this exercise is to analyze the information loss when we encrypt two random plain-
texts X and Y with the same key K. We assume that X, Y , and K are independent random
variables, that X and Y are identically distributed, and that K is uniformly distributed.

Part 1: Preliminaries

Q.1a Show that for all x and y, Pr[EncK(X) = x,EncK(Y ) = y] = 2−n Pr[X ⊕ Y = x⊕ y].

We have Pr[EncK(X) = x,EncK(Y ) = y] = Pr[EncK(X)⊕EncK(Y ) = y,EncK(X) =
x] = Pr[X ⊕ Y = x⊕ y,K = x⊕X]. Then,

Pr[X ⊕ Y = x⊕ y,K = x⊕X] =
∑
a

Pr[X ⊕ Y = x⊕ y,K = x⊕ a,X = a]

=
∑
a

Pr[X ⊕ Y = x⊕ y,X = a] Pr[K = x⊕ a]

= 2−n
∑
a

Pr[X ⊕ Y = x⊕ y,X = a]

= 2−n Pr[Pr[X ⊕ Y = x⊕ y]

since K is independent from (X,Y ) and uniformly distributed.

Q.1b Deduce that the statistical distance between (EncK(X),EncK(Y )) and a uniformly
distributed 2n-bit string is the same as the statistical distance between X ⊕ Y and a
uniformly distributed n-bit string.

We have

d =
1

2

∑
x,y

∣∣∣Pr[EncK(X) = x,EncK(Y ) = y]− 2−2n
∣∣∣

=
1

2

∑
x,y

2−n
∣∣Pr[X ⊕ Y = x⊕ y]− 2−n

∣∣
=

1

2

∑
x,δ

2−n
∣∣Pr[X ⊕ Y = δ]− 2−n

∣∣
=

1

2

∑
δ

∣∣Pr[X ⊕ Y = δ]− 2−n
∣∣

which is the statistical distance between X ⊕ Y and a uniformly distributed random
variable.

Q.1c Further show that this is similar for the Euclidean distance.



For the Euclidean distance, we have∑
x,y

(
Pr[EncK(X) = x,EncK(Y ) = y]− 2−2n

)2
=

∑
x,y

2−2n (
Pr[X ⊕ Y = x⊕ y]− 2−n)2

=
∑
x,δ

2−2n (
Pr[X ⊕ Y = δ]− 2−n)2

= 2−n
∑
δ

(
Pr[X ⊕ Y = δ]− 2−n)2

So the two Euclidean distances have a constant ratio (of 2−n, for the squared Eu-
clidean distance).

Part 2: Best distinguisher with a single sample

Q.2a What is the best advantage to distinguish (EncK(X),EncK(Y )) from a uniformly dis-
tributed 2n-bit string using a single sample?

The best advantage is the statistical distance

d =
1

2

∑
x,y

∣∣∣Pr[EncK(X) = x,EncK(Y ) = y]− 2−2n
∣∣∣

=
1

2

∑
δ

∣∣Pr[X ⊕ Y = δ]− 2−n
∣∣

Q.2b As an application, assume that X consists of a uniformly distributed random string
of n − 1 bits followed by a parity bit, i.e. a bit set to 1 if and only if there is an odd
number of 1’s amount the n − 1 other bits. Describe an optimal distinguisher with a
single query and compute its advantage.

Due to the parity bit, we have that Pr[X ⊕ Y = δ] = 21−n when the δ is even, and
Pr[X ⊕ Y = δ] = 0 otherwise. So,

d =
1

2
2n−1(21−n − 2−n) +

1

2
2n−1 × 2−n =

1

2

Given X ⊕ Y , the distinguisher simply outputs the parity of X ⊕ Y .

Part 3: Best distinguisher with many samples

Q.3a How many samples do we need (roughly) to distinguish (EncK(X),EncK(Y )) from a
uniformly distributed 2n-bit string with a good advantage?

The rough number of samples is N = 1/C where C is the Chernoff information
between (EncK(X),EncK(Y )) and the uniform string.

Q.3b Approximate this in terms of squared Euclidean distance.



The Chernoff information is approximated with the help of the Euclidean distance
by

C ≈ 22n

8 ln 2

∑
x,y

(
Pr[EncK(X) = x,EncK(Y ) = y]− 2−2n

)2
=

2n

8 ln 2

∑
δ

(
Pr[X ⊕ Y = δ]− 2−n)2

This holds when Pr[EncK(X) = x,EncK(Y ) = y] is always close to 2−2n.


