Advanced Cryptography - Midterm Exam Solution

Serge Vaudenay

3.5.2011

I A Crazy Cryptosystem

We define a new RSA-like public-key cryptosystem.

- For key generation, we generate two different prime numbers p and q of $\ell+1$ bits and larger than 2^{ℓ}, and make $N=p q$. Then, we pick a random α between 0 and $p-1$ and compute $a=1+\alpha p$. The public key is (a, N) and the secret key is p.
- To encrypt a message x of at most ℓ bits, the sender computes $y=x a^{r} \bmod N$ for a random r.
- To decrypt y, the receiver computes $x=y \bmod p$.
Q. 1 Give the complexity of the three algorithms. What is the advantage with respect to RSA?

Key generation takes $\mathcal{O}\left(\ell^{4}\right)$, like in RSA. Encryption takes $\mathcal{O}\left(\ell^{3}\right)$, the cost of the exponentiation, like in RSA. Decryption takes $\mathcal{O}\left(\ell^{2}\right)$, the cost of a modular reduction. Decryption is much faster than with RSA.
Q. 2 Show that the correctness property of the cryptosystem is satisfied.

$$
\begin{aligned}
& \text { We have } \quad y \bmod p=\left(x a^{r} \bmod N\right) \bmod p=\left(x a^{r}\right) \bmod p=x \\
& \text { since } a \bmod p=1 \text { and } x<p .
\end{aligned}
$$

Q. 3 Show that the decryption problem is as hard as the key recovery problem.

> Assume we have a decryption oracle \mathcal{O}. We can pick a random y and send it to \mathcal{O}. It will answer by $x=y \bmod p$. Then, we observe that p divides $y-x$. Since y is random, so is $\frac{y-x}{p}$, and it is likely to be coprime with q. So, $\operatorname{gcd}(y-x, N)=p$ with high probability. Therefore, we can do a key recovery by using $\mathcal{O}:$ decryption and key recovery are equivalent.
Q. 4 Show that key recovery is easy.

$$
\operatorname{gcd}(a-1, N)=p .
$$

II The DDH Problem and Bilinear Maps

We consider a (multiplicatively denoted) finite group $G=\langle g\rangle$ generated by some g element. We assume that there is a map e from $G \times G$ to some group H such that
$-\# G=\# H$;

- $h=e(g, g)$ generates H;
- for all $a, b, c \in G, e(a b, c)=e(a, c) e(b, c)$.
- for all $a, b, c \in G, e(a, b c)=e(a, b) e(a, c)$.

We call e a bilinear map.
Q. 1 Show that for all integers x, y, we have $e\left(g^{x}, g^{y}\right)=h^{x y}$.

We first show by induction on x that $e\left(g^{x}, b\right)=e(g, b)^{x}$. For $x=0$, since $a=1 . a$, we have that $e(a, b)=e(1, b) e(a, b)$, so $e(1, b)=1$. Then, assuming it holds for $x-1$, since $g^{x}=g^{x-1} . g$, we have

$$
e\left(g^{x}, b\right)=e\left(g^{x-1}, b\right) e(g, b)=e(g, b)^{x-1} e(g, b)=e(g, b)^{x}
$$

So, we have $e\left(g^{x}, b\right)=e(g, b)^{x}$ for all $x \geq 0$. Since x is taken modulo the order of g, it holds for any integer x.
Then, we show that $e\left(a, g^{y}\right)=e(a, g)^{y}$ in the same way. We deduce that

$$
e\left(g^{x}, g^{y}\right)=e\left(g^{x}, g\right)^{y}=\left(e(g, g)^{x}\right)^{y}=h^{x y}
$$

Q. 2 Recall what is the Decisional Diffie-Hellman (DDH) problem in group G.

We consider any algorithm \mathcal{A} fed with (U, X, Y, K) and which yields 0 or 1 . We let

$$
\operatorname{Adv}(\mathcal{A})(s)=\operatorname{Pr}_{\exp _{1}}[\mathcal{A}(U, X, Y, K)=1] \operatorname{Pr}_{\exp _{0}}[\mathcal{A}(U, X, Y, K)=1]
$$

where experiment $\exp _{b}$ consists of

- generate $U \leftarrow \operatorname{Gen}\left(1^{s}\right)$
- generate X, Y, K uniformly in $\langle g\rangle$
- if $b=1$, replace K by the solution of $\operatorname{DHP}(U, X, Y)$
where $\operatorname{DHP}\left(U, U^{x}, U^{y}\right)=U^{x y}$.
The DDH problem consists of building a probabilistic polynomial-time algorithm \mathcal{A} such that $\operatorname{Adv}(\mathcal{A})(s)$ is not negligible.
Q. 3 Show that the DDH problem in G is easy to solve when it is easy to compute e.

We define $\mathcal{A}(U, X, Y, K)=1_{e(U, K)=e(X, Y)}$. Clearly, we have $\operatorname{Pr}_{\exp _{1}}[\mathcal{A}(U, X, Y, K)=$ $1]=1$. To evaluate $\operatorname{Pr}_{\exp _{0}}[\mathcal{A}(U, X, Y, K)=1]$, we notice that $\mathcal{A}\left(g^{u}, g^{x}, g^{y}, g^{k}\right)=1$ if and only if $u k=x y$, which shall occur with a probability of $1 / \# G . \operatorname{So}, \operatorname{Adv}(\mathcal{A})(s)=$ $1-\frac{1}{\# G(s)}$ which is certainly not negligible.
Q. 4 Show that if the Discrete Logarithm problem is easy in H, then it is easy in G as well.

We observe that $e\left(g, g^{x}\right)=h^{x}$. So, if we can extract x from h and h^{x}, then we can extract x from g and g^{x} by computing $h=e\left(g, g^{x}\right)$.

III Almost Bent Functions

The exercise is inspired by Links between differential and linear cryptanalysis by Chabaud and Vaudenay. Published in the proceedings of Eurocrypt'94 pp. 356-365, LNCS vol. 950, Springer 1995.

In this exercise, we consider a function f mapping n bits to n bits. We define two functions DP^{f} and LP^{f} mapping two strings of n bits to a real number by

$$
\begin{aligned}
\operatorname{DP}^{f}(a, b) & =\operatorname{Pr}[f(X \oplus a) \oplus f(X)=b] \\
\operatorname{LP}^{f}(\alpha, \beta) & =(2 \operatorname{Pr}[\alpha \cdot X=\beta \cdot f(X)]-1)^{2}
\end{aligned}
$$

where X is uniformly distributed in $\{0,1\}^{n}, \oplus$ represents the bitwise exclusive-OR of two bitstrings, and $u \cdot v$ represents the parity of the bitwise AND of two bitstrings, i.e.

$$
\left(u_{1}, \ldots, u_{n}\right) \cdot\left(v_{1}, \ldots, v_{n}\right)=\left(u_{1} v_{1}+\cdots+u_{n} v_{n}\right) \bmod 2
$$

In this problem, we define

$$
\begin{aligned}
\mathrm{DP}_{\text {max }}^{f} & =\max _{(a, b) \neq(0,0)} \operatorname{DP}^{f}(a, b) \\
\mathrm{LP}_{\text {max }}^{f} & =\max _{(\alpha, \beta) \neq(0,0)} \mathrm{LP}^{f}(\alpha, \beta)
\end{aligned}
$$

Our purpose is to minimize $\operatorname{DP}_{\text {max }}^{f}$ and $\operatorname{LP}_{\text {max }}^{f}$. We recall that $\operatorname{DP}^{f}(a, b)$ and $\operatorname{LP}^{f}(\alpha, \beta)$ are always in the $[0,1]$ interval, that $\operatorname{DP}^{f}(0, b) \neq 0$ if and only if $b=0$, that $\operatorname{LP}^{f}(\alpha, 0) \neq 0$ if and only if $\alpha=0$, and that for all $a, \sum_{b} \operatorname{DP}^{f}(a, b)=1$. We further recall the two link formulas between DP^{f} and LP^{f} coming from the Fourier transform:

$$
\begin{aligned}
& \operatorname{DP}^{f}(a, b)=2^{-n} \sum_{\alpha, \beta}(-1)^{(a \cdot \alpha) \oplus(b \cdot \beta)} \operatorname{LP}^{f}(\alpha, \beta) \\
& \operatorname{LP}^{f}(\alpha, \beta)=2^{-n} \sum_{a, b}(-1)^{(a \cdot \alpha) \oplus(b \cdot \beta)} \operatorname{DP}^{f}(a, b)
\end{aligned}
$$

Part 1: Preliminaries

Q.1a Show that for all $\beta, \sum_{\alpha} \operatorname{LP}^{f}(\alpha, \beta)=1$.

We have

$$
\begin{aligned}
\sum_{\alpha} \operatorname{LP}^{f}(\alpha, \beta) & =\sum_{\alpha} 2^{-n} \sum_{a, b}(-1)^{(a \cdot \alpha) \oplus(b \cdot \beta)} \operatorname{DP}^{f}(a, b) \\
& =2^{-n} \sum_{a, b} \operatorname{DP}^{f}(a, b)(-1)^{b \cdot \beta} \sum_{\alpha}(-1)^{a \cdot \alpha}
\end{aligned}
$$

but the inner sum is nonzero only for $a=0$, in which case it is 2^{n}, so

$$
\sum_{\alpha} \operatorname{LP}^{f}(\alpha, \beta)=\sum_{b} \operatorname{DP}^{f}(0, b)(-1)^{b \cdot \beta}
$$

Now, $\operatorname{DP}^{f}(0, b)$ is nonzero only for $b=0$, so

$$
\sum_{\alpha} \operatorname{LP}^{f}(\alpha, \beta)=1
$$

Q.1b Show that $\sum_{a, b}\left(\operatorname{DP}^{f}(a, b)\right)^{2}=\sum_{\alpha, \beta}\left(\operatorname{LP}^{f}(\alpha, \beta)\right)^{2}$.
$\operatorname{Hint}_{1}: \sum_{x}\left(\sum_{y} g(x, y)\right)^{2}=\sum_{x, y, z} g(x, y) g(x, z)$. Do not be afraid of big sums! Hint $_{2}$: remember your other classes on the Fourier transform.

We apply again the link formula. We have

$$
\begin{aligned}
\sum_{a, b}\left(\operatorname{DP}^{f}(a, b)\right)^{2} & =\sum_{a, b}\left(2^{-n} \sum_{\alpha, \beta}(-1)^{(a \cdot \alpha) \oplus(b \cdot \beta)} \mathrm{LP}^{f}(\alpha, \beta)\right)^{2} \\
& =2^{-2 n} \sum_{a, b} \sum_{\alpha, \beta, \gamma, \delta}(-1)^{(a \cdot \alpha) \oplus(b \cdot \beta)} \mathrm{LP}^{f}(\alpha, \beta)(-1)^{(a \cdot \gamma) \oplus(b \cdot \delta)} \mathrm{LP}^{f}(\gamma, \delta) \\
& =2^{-2 n} \sum_{\alpha, \beta, \gamma, \delta} \operatorname{LP}^{f}(\alpha, \beta) \operatorname{LP}^{f}(\gamma, \delta) \sum_{a, b}(-1)^{(a \cdot(\alpha \oplus \gamma)) \oplus(b \cdot(\beta \oplus \delta))}
\end{aligned}
$$

where the inner sum is nonzero only for $\alpha=\gamma$ and $\beta=\delta$, in which case it is $2^{2 n}$, so

$$
\sum_{a, b}\left(\operatorname{DP}^{f}(a, b)\right)^{2}=\sum_{\alpha, \beta}\left(\operatorname{LP}^{f}(\alpha, \beta)\right)^{2}
$$

Part 2: APN functions

Q.2a Show that $\mathrm{DP}_{\max }^{f} \geq 2^{1-n}$. In the case of an equality, we say that f is Almost Perfect Nonlinear (APN).
Hint: First show that $2^{n} \operatorname{DP}^{f}(a, b)$ is an even integer.
$\mathrm{DP}^{f}(a, b)$ is 2^{-n} times the number of x 's such that $f(x \oplus a) \oplus f(x)=b$. When x satisfies this property, so does $x \oplus a$. Hence, the number of x 's is even. Therefore, $\operatorname{DP}^{f}(a, b)$ is an even number divided by 2^{n}. Since $\sum_{b} \operatorname{DP}^{f}(a, b)=1$, we can take any $a \neq 0$ and we deduce that there is at least one b such that $\operatorname{DP}^{f}(a, b) \neq 0$. So, $\operatorname{DP}^{f}(a, b) \geq 2^{1-n}$ with $a \neq 0$ from which we deduce $\mathrm{DP}_{\max }^{f} \geq 2^{1-n}$.
Q.2b Show that f is an APN function if and only if for all a and b such that $(a, b) \neq(0,0)$, we have either $\operatorname{DP}^{f}(a, b)=2^{1-n}$ or $\operatorname{DP}^{f}(a, b)=0$.

Since $\operatorname{DP}^{f}(a, b)$ is an even integer divided by 2^{n} and bounded by 2^{1-n}, it can only be 2^{1-n} or 0 . The converse is trivial.

Part 3: AB functions

Q.3a Show that $\sum_{\alpha} \sum_{\beta \neq 0}\left(\operatorname{LP}^{f}(\alpha, \beta)\right)^{2} \geq 2^{1-n}\left(2^{n}-1\right)$.

Hint: use Q.1b and observe that $\left(\operatorname{DP}^{f}(a, b)\right)^{2} \geq 2^{1-n} \operatorname{DP}^{f}(a, b)$

In Q.1b, we have proven that

$$
\begin{aligned}
& \sum_{\alpha, \beta}\left(\operatorname{LP}^{f}(\alpha, \beta)\right)^{2}=\sum_{a, b}\left(\operatorname{DP}^{f}(a, b)\right)^{2} \\
& \text { So, } \\
& \sum_{\alpha} \sum_{\beta \neq 0}\left(\operatorname{LP}^{f}(\alpha, \beta)\right)^{2}+\sum_{\alpha}\left(\operatorname{LP}^{f}(\alpha, 0)\right)^{2}=\sum_{a \neq 0} \sum_{b}\left(\operatorname{DP}^{f}(a, b)\right)^{2}+\sum_{b}\left(\operatorname{DP}^{f}(0, b)\right)^{2}
\end{aligned}
$$

So,
which leads to

$$
\sum_{\alpha} \sum_{\beta \neq 0}\left(\operatorname{LP}^{f}(\alpha, \beta)\right)^{2}=\sum_{a \neq 0} \sum_{b}\left(\operatorname{DP}^{f}(a, b)\right)^{2}
$$

Then, since $\left(\operatorname{DP}^{f}(a, b)\right)^{2} \geq 2^{1-n} \operatorname{DP}^{f}(a, b)$, we obtain

$$
\sum_{\alpha} \sum_{\beta \neq 0}\left(\operatorname{LP}^{f}(\alpha, \beta)\right)^{2} \geq 2^{1-n} \sum_{a \neq 0} \sum_{b} \operatorname{DP}^{f}(a, b)=2^{1-n}\left(2^{n}-1\right)
$$

Q.3b Show that $\mathrm{LP}_{\text {max }}^{f} \geq \frac{\sum_{\alpha} \sum_{\beta \neq 0}\left(\operatorname{LP}^{f}(\alpha, \beta)\right)^{2}}{\sum_{\alpha} \sum_{\beta \neq 0} \operatorname{LP}^{f}(\alpha, \beta)}$ with equality if and only if for all α, β with $\beta \neq 0$, we have either $\operatorname{LP}^{f}(\alpha, \beta)=0$ or $\operatorname{LP}^{f}(\alpha, \beta)=\operatorname{LP}_{\text {max }}^{f}$.
This is equivalent to show that $\sum_{\alpha} \sum_{\beta \neq 0} \operatorname{LP}^{f}(\alpha, \beta)\left(\operatorname{LP}_{m a x}^{f}-\operatorname{LP}^{f}(\alpha, \beta)\right) \geq 0$ with equality if and only if all terms in the sum are zero. Since all terms are positive, this is trivial.
Q.3c Show that $\mathrm{LP}_{\max }^{f} \geq 2^{1-n}$. In the case of an equality, we say that f is Almost Bent ($A B$).

The previous inequality in $Q .36$ together with the results of $Q .3$ a and $Q .1$ a turns into $\mathrm{LP}_{\text {max }}^{f} \geq 2^{1-n}$.
Q.3d Show that f is an AB function if and only if for all α and β such that $(\alpha, \beta) \neq(0,0)$, we have either $\mathrm{LP}^{f}(\alpha, \beta)=2^{1-n}$ or $\mathrm{LP}^{f}(\alpha, \beta)=0$.

If f is $A B$, then we have an equality case in the inequality of $Q .3 b$. This leads to the result. The other direction is trivial.
Q.3e Show that if f is an AB function, then it is APN as well.
If f is $A B$, then $\sum_{\alpha} \sum_{\beta \neq 0}\left(\operatorname{LP}^{f}(\alpha, \beta)\right)^{2}=2^{1-n}\left(2^{n}-1\right)$. So, thanks to $Q .1 b$,
$\sum_{a \neq 0} \sum_{b}\left(\operatorname{DP}^{f}(a, b)\right)^{2}=2^{1-n}\left(2^{n}-1\right)$. Just like in $Q .3 b$, we have $\mathrm{DP}_{\max }^{f} \geq$
$\frac{\sum_{a \neq 0} \sum_{b}\left(\operatorname{DP}^{f}(a, b)\right)^{2}}{\sum_{a \neq 0} \sum_{b} \mathrm{DP}^{f}(a, b)}$ which is equal to 2^{1-n}. So, f is APN.

IV Analyzing Two-Time Pad

We consider the Vernam cipher defined by $\operatorname{Enc}_{K}(X)=x \oplus K$, where the plaintext X and the key K are two bitstrings of length n, independent random variables, and K is uniformly distributed. We assume that X comes from a biased source with a given distribution. The purpose of this exercise is to analyze the information loss when we encrypt two random plaintexts X and Y with the same key K. We assume that X, Y, and K are independent random variables, that X and Y are identically distributed, and that K is uniformly distributed.

Part 1: Preliminaries

Q.1a Show that for all x and $y, \operatorname{Pr}\left[\operatorname{Enc}_{K}(X)=x, \operatorname{Enc}_{K}(Y)=y\right]=2^{-n} \operatorname{Pr}[X \oplus Y=x \oplus y]$.

$$
\begin{aligned}
& \text { We have } \operatorname{Pr}\left[\operatorname{Enc}_{K}(X)=x, \operatorname{Enc}_{K}(Y)=y\right]=\operatorname{Pr}\left[\operatorname{Enc}_{K}(X) \oplus \operatorname{Enc}_{K}(Y)=y, \operatorname{Enc}_{K}(X)=\right. \\
& x]=\operatorname{Pr}[X \oplus Y=x \oplus y, K=x \oplus X] \text {. Then, } \\
& \begin{aligned}
\operatorname{Pr}[X \oplus Y=x \oplus y, K=x \oplus X] & =\sum_{a} \operatorname{Pr}[X \oplus Y=x \oplus y, K=x \oplus a, X=a] \\
& =\sum_{a} \operatorname{Pr}[X \oplus Y=x \oplus y, X=a] \operatorname{Pr}[K=x \oplus a] \\
& =2^{-n} \sum_{a} \operatorname{Pr}[X \oplus Y=x \oplus y, X=a] \\
& =2^{-n} \operatorname{Pr}[\operatorname{Pr}[X \oplus Y=x \oplus y]
\end{aligned}
\end{aligned}
$$

since K is independent from (X, Y) and uniformly distributed.
Q.1b Deduce that the statistical distance between $\left(\operatorname{Enc}_{K}(X), \operatorname{Enc}_{K}(Y)\right)$ and a uniformly distributed $2 n$-bit string is the same as the statistical distance between $X \oplus Y$ and a uniformly distributed n-bit string.

$$
\begin{aligned}
& \text { We have } \\
& \qquad \begin{aligned}
d & =\frac{1}{2} \sum_{x, y}\left|\operatorname{Pr}\left[\operatorname{Enc}_{K}(X)=x, \operatorname{Enc}_{K}(Y)=y\right]-2^{-2 n}\right| \\
& =\frac{1}{2} \sum_{x, y} 2^{-n}\left|\operatorname{Pr}[X \oplus Y=x \oplus y]-2^{-n}\right| \\
& =\frac{1}{2} \sum_{x, \delta} 2^{-n}\left|\operatorname{Pr}[X \oplus Y=\delta]-2^{-n}\right| \\
& =\frac{1}{2} \sum_{\delta}\left|\operatorname{Pr}[X \oplus Y=\delta]-2^{-n}\right|
\end{aligned}
\end{aligned}
$$

which is the statistical distance between $X \oplus Y$ and a uniformly distributed random variable.
Q.1c Further show that this is similar for the Euclidean distance.

For the Euclidean distance, we have

$$
\begin{aligned}
& \sum_{x, y}\left(\operatorname{Pr}\left[\operatorname{Enc}_{K}(X)=x, \operatorname{Enc}_{K}(Y)=y\right]-2^{-2 n}\right)^{2} \\
= & \sum_{x, y} 2^{-2 n}\left(\operatorname{Pr}[X \oplus Y=x \oplus y]-2^{-n}\right)^{2} \\
= & \sum_{x, \delta} 2^{-2 n}\left(\operatorname{Pr}[X \oplus Y=\delta]-2^{-n}\right)^{2} \\
= & 2^{-n} \sum_{\delta}\left(\operatorname{Pr}[X \oplus Y=\delta]-2^{-n}\right)^{2}
\end{aligned}
$$

So the two Euclidean distances have a constant ratio (of 2^{-n}, for the squared Euclidean distance).

Part 2: Best distinguisher with a single sample

Q.2a What is the best advantage to distinguish $\left(\operatorname{Enc}_{K}(X), \operatorname{Enc}_{K}(Y)\right)$ from a uniformly distributed $2 n$-bit string using a single sample?

The best advantage is the statistical distance

$$
\begin{aligned}
d & =\frac{1}{2} \sum_{x, y}\left|\operatorname{Pr}\left[\operatorname{Enc}_{K}(X)=x, \operatorname{Enc}_{K}(Y)=y\right]-2^{-2 n}\right| \\
& =\frac{1}{2} \sum_{\delta}\left|\operatorname{Pr}[X \oplus Y=\delta]-2^{-n}\right|
\end{aligned}
$$

Q.2b As an application, assume that X consists of a uniformly distributed random string of $n-1$ bits followed by a parity bit, i.e. a bit set to 1 if and only if there is an odd number of 1's amount the $n-1$ other bits. Describe an optimal distinguisher with a single query and compute its advantage.

Due to the parity bit, we have that $\operatorname{Pr}[X \oplus Y=\delta]=2^{1-n}$ when the δ is even, and $\operatorname{Pr}[X \oplus Y=\delta]=0$ otherwise. So,

$$
d=\frac{1}{2} 2^{n-1}\left(2^{1-n}-2^{-n}\right)+\frac{1}{2} 2^{n-1} \times 2^{-n}=\frac{1}{2}
$$

Given $X \oplus Y$, the distinguisher simply outputs the parity of $X \oplus Y$.

Part 3: Best distinguisher with many samples

Q.3a How many samples do we need (roughly) to distinguish $\left(\operatorname{Enc}_{K}(X), \operatorname{Enc}_{K}(Y)\right)$ from a uniformly distributed $2 n$-bit string with a good advantage?

The rough number of samples is $N=1 / C$ where C is the Chernoff information between $\left(\operatorname{Enc}_{K}(X), \operatorname{Enc}_{K}(Y)\right)$ and the uniform string.
Q.3b Approximate this in terms of squared Euclidean distance.

The Chernoff information is approximated with the help of the Euclidean distance by

$$
\begin{aligned}
C & \approx \frac{2^{2 n}}{8 \ln 2} \sum_{x, y}\left(\operatorname{Pr}\left[\operatorname{Enc}_{K}(X)=x, \operatorname{Enc}_{K}(Y)=y\right]-2^{-2 n}\right)^{2} \\
& =\frac{2^{n}}{8 \ln 2} \sum_{\delta}\left(\operatorname{Pr}[X \oplus Y=\delta]-2^{-n}\right)^{2}
\end{aligned}
$$

This holds when $\operatorname{Pr}\left[\operatorname{Enc}_{K}(X)=x, \operatorname{Enc}_{K}(Y)=y\right]$ is always close to $2^{-2 n}$.

