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1 Some Decisional Diffie-Hellman Problems

For each of the group families below, give their order, say if they are cyclic, and show that the Deci-
sional Diffie-Hellman problem (DDH) is not hard.

Q.1 G =7Z, where p is an odd prime number.

G has order p — 1. We know from the theory of Galois fields theory that some elements
generate Zy,. So, it is cyclic.

We define L(x) € {0, 1} such that (%) = (=1, If g is a generator of Z,, we have L(g") =
xmod 2 for all x. If (X,Y,Z) is such that X = g*, Y = g, Z = g%, we must have L(Z) =
L(X)L(Y). If (X,Y,Z) is random in Z13,, we have L(Z) = L(X)L(Y) with probability . So,
a distinguisher checking that L(Z) = L(X)L(Y) given (g,X,Y,Z) has an advantage of 1 to
distinguish a Diffie-Hellman tuple from a random one.

Q.2 G={-1,+1} x H where H is a cyclic group of odd prime order g.

G has order 2q. If h is a generator of H, we can check that g = (—1,h) is a generator of|
G: for y = ((—1)?,x), let o be such that x = h*. If b = & mod 2, then g* = y. Otherwise,
g(x+q =y.

Let L((—1)?,x) = b. Again, a distinguisher checking that L(Z) = L(X)L(Y) will output 1
with probability 1 for a Diffie-Hellman tuple (X,Y,Z) and with probability %for a random
one. So, the advantage is %

Q.3 G =Z, where g is a prime number.

Z4 has order q and 1 is a generator. For and integer x, the “logarithm” of x in basis 1 is x,
modulo q.

Since the discrete logarithm problem is easy to solve, we can design a trivial distinguisher
which checks whether logZ = (logX)(logY). For a Diffie-Hellman tuple, it produces 1 with
probability 1. For a random tuple, it produces 1 with probability é. So, the advantage is
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2 MAC Revisited

This exercise is inspired from Message Authentication, Revisited by Dodis, Kiltz, Pietrzak,
and Wichs. Published in the proceedings of Eurocrypt’12 pp. 355-374, LNCS vol. 7237
Springer 2012.

Given a security parameter s, a set X; and two groups 95 and X, we define a function family by a
deterministic algorithm mapping (s,k,x) for k € %; and x € X; to some y € 9;, in time bounded by a
polynomial in terms of s. (By abuse of notation, we denote y = f;(x) and omit s.)

We say that this is a key-homomorphic function if for any s, any x € X, any kj,k» € X;, and any
integers a, b, we have

fakr+te () = (fi ()" (fi (6))"

Given a function family f, a function ¢, and a bit b, we define the following game.

Game wPRF,(b):

1: pick random coins r

2: pick xq, ..., Xy ) € Xy uniformly

3: if b =0 then

4:  pick k € X uniformly

5: compute y; = fy(x;), i=1,...,£4(s)

6: else
7 pick a random function g : Xy — 9%
8: computey; =g(x;),i=1,...,0(s)
9: end if

10: b« 'q((xlayl)a Tt (xé(s)vyf(s));r)
Given some fixed b, r, and k or g, the game is deterministic and we define I’ &5,5F(ﬂ) or F‘{YE?F(E)
as the outcome b’. We say that f is a weak pseudorandom function (wPRF) if for any polynomially
bounded function ¢(s) and for any probabilistic polynomial-time adversary 4, in the above game we
have that Pr, i [[37 87 () = 1] — Pr.[[¥2 57 (4) = 1] is negligible in terms of 5. (Le., the probability
that b’ = 1 hardly depends on b.)

In what follows, we assume a polynomially bounded algorithm Gen which given s generates a
prime number g of polynomially bounded length and a (multiplicatively denoted) group G, of order ¢
with basic operations (multiplication, inversion, comparison) computable in polynomial time. We set
Xy =95 =Gy and K; = Z,. We define fi(x) = x*. We refer to this as the DH-based function.

Q.1 Show that the DH-based function is: 1- a function family which is 2- key-homomorphic.

Clearly, fi(x) can be computed in polynomial time using the square-and-multiply algorithm.
For any x € X, ki,ky € K;, and any integers a,b, we have

— yaki+bk:

= (@) ()
= (fia ()" (fio (x))"

So, we have the key-homomorphic property.

Jaky +bky (X)




Q.2 Given (g,X,Y,Z) where g generates G and with X = g*, Y = g”, and Z = g%, show that by picking
o, B € Z, uniformly at random, then the pair (g*X B,y*ZP) has a distribution which is uniform in
G? when z # xy. Show that it has the same distribution as (7',7”) with T uniformly distributed in
the z = xy case.

The distribution of (g*XP,Y*ZP) is uniform in G? if and only if the distribution of (o, +
xB,you+ zP) is uniform in Zé. We have

o+xB\ [1x) [«
yo+zB)  \yz)\B
and (o, B) is uniformly distributed in Zé. Since the matrix

()

is invertible when 7 # xy, we obtain that the pair is uniformly distributed in that case.
When z = xy, we observe that T = g®XP is uniformly distributed and that Y*7Z8 = T7.

Q.3 Show that if the decisional Diffie-Hellman (DDH) problem is hard for Gen, then the DH-based
function is a wPRF.
Hint: given an adversary A4 playing the wPRF () (b) game, construct a distinguisher D(g,X,Y,Z)
for the DDH problem by taking x; = g%XP and y; = Y%ZPi i=1,... ¢(s).

Let A be an adversary, let {(s) be polynomially bounded.

Let (g,X,Y,Z) be a DDH input to D. We pick o;,B; € Z, uniformly at random,
i=1,...,0(s). We set x; = g%XP and y; = Y%ZP, i =1,... 0(s). We set b =
A((x1,51);- -+ (Xe(s),Ve(s)); 7) and return b’ as the output from D.

If X,Y,Z are uniformly distributed in G, then all (x;,y;) are independent and uniformly
distributed in G? in the 7 # xy case. If all x;’s are pairwise distinct, this has the same distri-
bution as in the wPRF game with b = 1. Since z = xy and x; = xj occur with negligible prob-
abilities and since £(s) is polynomially bounded, we obtain that Pr[D = 1|X,Y,Z uniform] =
TYPRE(A) + negl(s).

IfX=g"Y =g Z=_g" forx,y random, then y; = x, for all i, with all x; independent and
uniformly distributed and y is random. This corresponds to the distribution that A sees in
the b = 0 case. So, Pr[D = 1|X,Y uniform,Z = DH(X,Y)] = FgEkRF(ﬁl) in that case.
Finally, the DDH advantage of D is F‘l"i':EF(ﬂ) - FXEEF(JZD + negl(s). Due to the DDH
assumption, this must be negligible. So, F‘f’ﬁ;'z(ﬂ) — F&iEF(ﬂ) is negligible for all 4. So,
we have a wPRF.

Given a bit b, we define a MAC scheme based on the three polynomial algorithms KG (to generate
a symmetric key), TAG (to compute the authenticated tag of a message based on a key), VRFY (to
verify the tag of a message based on a key).
We define the following game.
Game IND-CMA(b):
1: pick random coins r



2: if b =0 then
3 run KG—k
4:  set up the oracle TAG(-)
s b e AT ()
6: else
7 pick a random function g : Xy — 9%
8:  setup the oracle g(-)
b < a80)(;r)
10: end if
Given some fixed b, r, and k or g, the game is deterministic and we define FB'}',?;CMA (4) or F'l'f'rg'CMA (4)
as the outcome b'. We say that the MAC is IND-CMA-secure if for any probabilistic polynbmial ad-
versary A, Pr, [FB'?'A%‘CMA (A) =1] —Pr,, [F'll.\'r?g'CMA(ﬂ) = 1] is negligible in terms of the security
parameter s. ' h

We construct a MAC scheme from a key-homomorphic function family as follows:

R

KG : pick uniformly at random and yield k1, k; € &
TAGy, 1, (m) : pick x € X, yield (x, fink, 1k, (X))
VRFYy, 1, (m, (x,y)) : say whether fiu, 1k, (x) =y

Q.4 Assume that f is a key-homomorphic function family. Given an IND-CMA-adversary 4 on the
above MAC scheme, we define a wPRF-adversary B on f as follows:
11 TeCeives X1, Y1, .-, Xy(s)s Ve(s)
2: pick k; € X at random
3: simulate b’ <+ 4
for the ith chosen message query m from A4, simulate answer by ; = fi, (x;)™y;
(if there are more than ¢(s) chosen message queries, abort)
Show that Ty RF(B) = TR “MA(4) and that T} R (B) = IS MA ().

If the y;’s are computed from fi(x;), then we clearly simulate the IND-CMA attack with the
correct MAC scheme.

Ifthe y;’s are computed from g(x;) with a random function g, we observe that x — fi, (x)g(x)
is also a uniformly distributed function. So, we simulate the IND-CMA attack with an ideal
MAC scheme.

Q.5 Show that if f is a key-homomorphic wPREF, then the above construction is IND-CMA-secure.

We have already shown that for any IND-CMA adversary A we have a wPRF adversary
B with same advantage. Since the function is a wPRF function, the advantage of ‘B must
be negligible. Consequently, for any A4, its advantage is negligible. So, the MAC scheme is
IND-CMA-secure.

Q.6 Propose an IND-CMA-secure MAC scheme based on the decisional Diffie-Hellman problem.

We merge the two constructions and obtain the following scheme:

KG : pick and yield 1,k € Z,,
TAGy, 1, (m) : pick x € G, yield (x,x”’k1+k2)
VRFYliQ (ma (X7Y)) : say whether Xtk — y

Assuming that the DDH problem is hard on G, the MAC scheme is IND-CMA-secure.
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3 Perfect Unbounded IND is Equivalent to Perfect Secrecy

Given a message block space M and a key space X, we define a block cipher as a deterministic
algorithm mapping (k,x) for k € K and x € M to some y € M. We denote y = Ci(x). The algorithm
must be such that there exists another algorithm C; ' such that for all k and x, we have C; ' (Cy(x)) =
We say that C provides perfect secrecy if for each x, the random variable Ck(x) is uniformly
distributed in M when the random variable K is uniformly distributed in %.
Given a bit b, we define the following game.

Game IND(b):

1: pick random coins r

2: pick k € X uniformly

3: run (mo,my) < A4(;r)

4: compute y = Cy(myp)

5: run b’ <+ A(y;r)
Given some fixed b, r, k, the game is deterministic and we define F}?Nri(/‘zl) as the outcome b’. We say
that C provides perfect unbounded IND-security if for any (unbounded) adversary 4 playing the above
game, we have Prrk[l"(')Nr'?c(/‘zl) =1]=Pr, k[F'lNﬁ(ﬁl) = 1]. (That is, the probability that »' = 1 does not
depend on b.)

Q.1 This question is to see the link with a more standard notion of perfect secrecy.

Let X be a random variable of support M, let K be independent, and uniformly distributed in %,
and let Y = Cg(X). Show that X and Y are independent if and only if C provides perfect secrecy
as defined in this exercise.

Hint: first show that for all x and y, Pr[Y = y,X = x] = Pr[Ck(x) = y]Pr[X = x]. Then, deduce
that if C provides perfect secrecy, then Y is uniformly distributed which implies that X and Y
are independent. Conversely, if X and Y are independent, deduce that for all x and y we have
Pr[Ck(X) = y] = Pr[Cx(x) = y]. Deduce that C'(y) is uniformly distributed then that Ck(x) is
uniformly distributed.

First note that in any case, for any x and y we have
Pr[Y =y,X = x] =Pr[Cx(X) = y,X = x] = Pr[Ck(x) = y,X = x] = Pr[Ck(x) = y| Pr[X = x]

If C provides perfect secrecy, then, we deduce Pr[Y »X=x]= 1 a7 PriX = x|. By summing
this over x, we further obtain Pr[Y =y| = —. So, Pr[Y = y,X —x] Pr[Y = y|Pr[X = ]
for all x and y: X and Y are independent.

Conversely, if X and Y are independent, the above property gives

Pr[Cg(X) = y]Pr[X = x] =Pr[Y = y|Pr[X = x| =Pr[Y = y,X =x] =Pr[Cx(x) = y|Pr[X =]

Since X has support M, we have Pr[X = x| # 0, so we can simplify by Pr[X = x| and get
Pr[Cx (X) = y] = Pr[Ck(x) = y] for all x and y. This implies that Pr[C¢' (y) = x] does not
depend on x, so Ci'(y) is uniformly distributed, for all y. So, Pr[Ck(x) = y] = #M for all
x and y. Therefore, Cx(x) is uniformly distributed for all x: C provides perfect secrecy as
defined in this exercise.

Q.2 Show that if C provides perfect secrecy, then it is perfect unbounded IND-secure.



Since we have perfect secrecy, when b and r are fixed and k random, y is uniformly dis-
tributed whatever b. So, the distribution of b’ = A(y;r) does not depend on b when b and
r are fixed. So, Prk[F:)'?‘rF,)((ﬂ) = 1] = P[NP (2) = 1] for all r. Thus, on average over r,
we have Pr, [Fg,\'g{(ﬂ) = 1] = Pr, [F'l'?'r?c(ﬂl) = 1]. Therefore, we have perfect unbounded

IND-security.

Q.3 Show that if C is perfect unbounded IND-secure, then for all x;,x;,z € M, we have that Pr[Ck (x) =
z] = Pr[Ck(x2) = z] when K is uniformly distributed in %.
Hint: define a deterministic adversary A, », ; based on x1, x», and z.

We define the following adversary A. First, A(;r) produces my = x| and my = x;. Then,

A(y,r) =1ifand only ify = z.

We have Prk[l“yf'r?((ﬂl) = 1] = Pr[Ck(xp) = z|. Furthermore, since A is deterministic,
F}?Nr?((ﬁl) does not depend on r. So, Prr,k[Fz'?‘rF,)((ﬂ) = 1] =Pr[Ck(xp) = 2]

Since the cipher is perfect unbounded IND-secure, we have Pr,j [Fg?‘,?{(ﬂ) =1] =
Pr[TND(2) = 1. Therefore, Pr[Ck (x1) = 2] = Pr[Cx (x2) = 2] ’

We deduce that the distribution of Ck(x) does not depend on x.

Q.4 Deduce that if C is perfect unbounded IND-secure, then it provides perfect secrecy.

Given xo and y, we have that

Pr(Cx (x0) = ] x #3£ = ¥ Pr(Cx(x) =] = ¥ PriCg () = x] = 1

The first equality coming from the previous question. So, Pr[Ck(xo) = y] = 1 /#M : Ck(xo)
is uniformly distributed, for any xo. Therefore, we have perfect secrecy.




