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1 Some Decisional Diffie-Hellman Problems

For each of the group families below, give their order, say if they are cyclic, and show that the Deci-
sional Diffie-Hellman problem (DDH) is not hard.

Q.1 G = Z∗p where p is an odd prime number.

G has order p− 1. We know from the theory of Galois fields theory that some elements
generate Z∗p. So, it is cyclic.

We define L(x)∈ {0,1} such that
(

x
p

)
= (−1)L(x). If g is a generator of Z∗p, we have L(gx) =

x mod 2 for all x. If (X ,Y,Z) is such that X = gx, Y = gy, Z = gxy, we must have L(Z) =
L(X)L(Y ). If (X ,Y,Z) is random in Z3

p, we have L(Z) = L(X)L(Y ) with probability 1
2 . So,

a distinguisher checking that L(Z) = L(X)L(Y ) given (g,X ,Y,Z) has an advantage of 1
2 to

distinguish a Diffie-Hellman tuple from a random one.

Q.2 G = {−1,+1}×H where H is a cyclic group of odd prime order q.

G has order 2q. If h is a generator of H, we can check that g = (−1,h) is a generator of
G: for y = ((−1)b,x), let α be such that x = hα. If b = α mod 2, then gα = y. Otherwise,
gα+q = y.
Let L((−1)b,x) = b. Again, a distinguisher checking that L(Z) = L(X)L(Y ) will output 1
with probability 1 for a Diffie-Hellman tuple (X ,Y,Z) and with probability 1

2 for a random
one. So, the advantage is 1

2 .

Q.3 G = Zq where q is a prime number.

Zq has order q and 1 is a generator. For and integer x, the “logarithm” of x in basis 1 is x,
modulo q.
Since the discrete logarithm problem is easy to solve, we can design a trivial distinguisher
which checks whether logZ = (logX)(logY ). For a Diffie-Hellman tuple, it produces 1 with
probability 1. For a random tuple, it produces 1 with probability 1

q . So, the advantage is
1− 1

q .



2 MAC Revisited

This exercise is inspired from Message Authentication, Revisited by Dodis, Kiltz, Pietrzak,
and Wichs. Published in the proceedings of Eurocrypt’12 pp. 355–374, LNCS vol. 7237
Springer 2012.

Given a security parameter s, a set Xs and two groups Ys and Ks, we define a function family by a
deterministic algorithm mapping (s,k,x) for k ∈ Ks and x ∈ Xs to some y ∈ Ys, in time bounded by a
polynomial in terms of s. (By abuse of notation, we denote y = fk(x) and omit s.)

We say that this is a key-homomorphic function if for any s, any x ∈ Xs, any k1,k2 ∈ Ks, and any
integers a,b, we have

fak1+bk2(x) = ( fk1(x))
a ( fk2(x))

b

Given a function family f , a function `, and a bit b, we define the following game.
Game wPRF`(b):

1: pick random coins r
2: pick x1, . . . ,x`(s) ∈ Xs uniformly
3: if b = 0 then
4: pick k ∈Ks uniformly
5: compute yi = fk(xi), i = 1, . . . , `(s)
6: else
7: pick a random function g : Xs→ Ys

8: compute yi = g(xi), i = 1, . . . , `(s)
9: end if

10: b′← A((x1,y1), . . . ,(x`(s),y`(s));r)

Given some fixed b, r, and k or g, the game is deterministic and we define ΓwPRF
0,r,k (A) or ΓwPRF

1,r,g (A)
as the outcome b′. We say that f is a weak pseudorandom function (wPRF) if for any polynomially
bounded function `(s) and for any probabilistic polynomial-time adversary A , in the above game we
have that Prr,k[ΓwPRF

0,r,k (A) = 1]−Prr,g[ΓwPRF
1,r,g (A) = 1] is negligible in terms of s. (I.e., the probability

that b′ = 1 hardly depends on b.)
In what follows, we assume a polynomially bounded algorithm Gen which given s generates a

prime number q of polynomially bounded length and a (multiplicatively denoted) group Gs of order q
with basic operations (multiplication, inversion, comparison) computable in polynomial time. We set
Xs = Ys = Gs and Ks = Zq. We define fk(x) = xk. We refer to this as the DH-based function.

Q.1 Show that the DH-based function is: 1- a function family which is 2- key-homomorphic.

Clearly, fk(x) can be computed in polynomial time using the square-and-multiply algorithm.
For any x ∈ Xs, k1,k2 ∈Ks, and any integers a,b, we have

fak1+bk2(x) = xak1+bk2

=
(

xk1
)a(

xk2
)b

= ( fk1(x))
a ( fk2(x))

b

So, we have the key-homomorphic property.
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Q.2 Given (g,X ,Y,Z) where g generates G and with X = gx, Y = gy, and Z = gz, show that by picking
α,β ∈ Zq uniformly at random, then the pair (gαXβ,Y αZβ) has a distribution which is uniform in
G2 when z 6= xy. Show that it has the same distribution as (T,T y) with T uniformly distributed in
the z = xy case.

The distribution of (gαXβ,Y αZβ) is uniform in G2 if and only if the distribution of (α+
xβ,yα+ zβ) is uniform in Z2

q. We have(
α+ xβ
yα+ zβ

)
=

(
1 x
y z

)(
α
β

)
and (α,β) is uniformly distributed in Z2

q. Since the matrix(
1 x
y z

)
is invertible when z 6= xy, we obtain that the pair is uniformly distributed in that case.
When z = xy, we observe that T = gαXβ is uniformly distributed and that Y αZβ = T y.

Q.3 Show that if the decisional Diffie-Hellman (DDH) problem is hard for Gen, then the DH-based
function is a wPRF.
Hint: given an adversary A playing the wPRF`(s)(b) game, construct a distinguisher D(g,X ,Y,Z)
for the DDH problem by taking xi = gαiXβi and yi = Y αiZβi , i = 1, . . . , `(s).

Let A be an adversary, let `(s) be polynomially bounded.
Let (g,X ,Y,Z) be a DDH input to D. We pick αi,βi ∈ Zq uniformly at random,
i = 1, . . . , `(s). We set xi = gαiXβi and yi = Y αiZβi , i = 1, . . . , `(s). We set b′ =
A((x1,y1), . . . ,(x`(s),y`(s));r) and return b′ as the output from D.
If X ,Y,Z are uniformly distributed in Gs, then all (xi,yi) are independent and uniformly
distributed in G2

s in the z 6= xy case. If all xi’s are pairwise distinct, this has the same distri-
bution as in the wPRF game with b = 1. Since z = xy and xi = x j occur with negligible prob-
abilities and since `(s) is polynomially bounded, we obtain that Pr[D = 1|X ,Y,Z uniform] =
ΓwPRF

1,r,g (A)+negl(s).
If X = gx, Y = gy, Z = gxy for x,y random, then yi = xy

i for all i, with all xi independent and
uniformly distributed and y is random. This corresponds to the distribution that A sees in
the b = 0 case. So, Pr[D = 1|X ,Y uniform,Z = DH(X ,Y )] = ΓwPRF

0,r,k (A) in that case.
Finally, the DDH advantage of D is ΓwPRF

1,r,g (A)−ΓwPRF
0,r,k (A) + negl(s). Due to the DDH

assumption, this must be negligible. So, ΓwPRF
1,r,g (A)−ΓwPRF

0,r,k (A) is negligible for all A . So,
we have a wPRF.

Given a bit b, we define a MAC scheme based on the three polynomial algorithms KG (to generate
a symmetric key), TAG (to compute the authenticated tag of a message based on a key), VRFY (to
verify the tag of a message based on a key).

We define the following game.
Game IND-CMA(b):

1: pick random coins r
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2: if b = 0 then
3: run KG→ k
4: set up the oracle TAGk(·)
5: b′← ATAGk(·)(;r)
6: else
7: pick a random function g : Xs→ Ys

8: set up the oracle g(·)
9: b′← Ag(·)(;r)

10: end if
Given some fixed b, r, and k or g, the game is deterministic and we define ΓIND-CMA

0,r,k (A) or ΓIND-CMA
1,r,g (A)

as the outcome b′. We say that the MAC is IND-CMA-secure if for any probabilistic polynomial ad-
versary A , Prr,k[ΓIND-CMA

0,r,k (A) = 1]− Prr,g[ΓIND-CMA
1,r,g (A) = 1] is negligible in terms of the security

parameter s.
We construct a MAC scheme from a key-homomorphic function family as follows:

KG : pick uniformly at random and yield k1,k2 ∈Ks

TAGk1,k2(m) : pick x ∈ Xs, yield (x, fmk1+k2(x))

VRFYk1,k2(m,(x,y)) : say whether fmk1+k2(x) = y

Q.4 Assume that f is a key-homomorphic function family. Given an IND-CMA-adversary A on the
above MAC scheme, we define a wPRF-adversary B on f as follows:

1: receives x1,y1, . . . ,x`(s),y`(s)
2: pick k1 ∈Ks at random
3: simulate b′← A

for the ith chosen message query m from A , simulate answer by ti = fk1(xi)
miyi

(if there are more than `(s) chosen message queries, abort)
Show that ΓwPRF

0,r,k1
(B) = ΓIND-CMA

0,r,k1
(A) and that ΓwPRF

1,r,g (B) = ΓIND-CMA
1,r,g (A).

If the yi’s are computed from fk(xi), then we clearly simulate the IND-CMA attack with the
correct MAC scheme.
If the yi’s are computed from g(xi) with a random function g, we observe that x 7→ fk1(x)g(x)
is also a uniformly distributed function. So, we simulate the IND-CMA attack with an ideal
MAC scheme.

Q.5 Show that if f is a key-homomorphic wPRF, then the above construction is IND-CMA-secure.

We have already shown that for any IND-CMA adversary A we have a wPRF adversary
B with same advantage. Since the function is a wPRF function, the advantage of B must
be negligible. Consequently, for any A , its advantage is negligible. So, the MAC scheme is
IND-CMA-secure.

Q.6 Propose an IND-CMA-secure MAC scheme based on the decisional Diffie-Hellman problem.

We merge the two constructions and obtain the following scheme:

KG : pick and yield k1,k2 ∈ Zq

TAGk1,k2(m) : pick x ∈ Gs, yield (x,xmk1+k2)

VRFYk1,k2(m,(x,y)) : say whether xmk1+k2 = y

Assuming that the DDH problem is hard on G, the MAC scheme is IND-CMA-secure.
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3 Perfect Unbounded IND is Equivalent to Perfect Secrecy

Given a message block space M and a key space K , we define a block cipher as a deterministic
algorithm mapping (k,x) for k ∈ K and x ∈M to some y ∈M . We denote y =Ck(x). The algorithm
must be such that there exists another algorithm C−1

k such that for all k and x, we have C−1
k (Ck(x)) = x.

We say that C provides perfect secrecy if for each x, the random variable CK(x) is uniformly
distributed in M when the random variable K is uniformly distributed in K .

Given a bit b, we define the following game.
Game IND(b):

1: pick random coins r
2: pick k ∈K uniformly
3: run (m0,m1)← A(;r)
4: compute y =Ck(mb)
5: run b′← A(y;r)

Given some fixed b,r,k, the game is deterministic and we define ΓIND
b,r,k(A) as the outcome b′. We say

that C provides perfect unbounded IND-security if for any (unbounded) adversary A playing the above
game, we have Prr,k[ΓIND

0,r,k(A) = 1] = Prr,k[ΓIND
1,r,k(A) = 1]. (That is, the probability that b′ = 1 does not

depend on b.)

Q.1 This question is to see the link with a more standard notion of perfect secrecy.
Let X be a random variable of support M , let K be independent, and uniformly distributed in K ,
and let Y =CK(X). Show that X and Y are independent if and only if C provides perfect secrecy
as defined in this exercise.
Hint: first show that for all x and y, Pr[Y = y,X = x] = Pr[CK(x) = y]Pr[X = x]. Then, deduce
that if C provides perfect secrecy, then Y is uniformly distributed which implies that X and Y
are independent. Conversely, if X and Y are independent, deduce that for all x and y we have
Pr[CK(X) = y] = Pr[CK(x) = y]. Deduce that C−1

K (y) is uniformly distributed then that CK(x) is
uniformly distributed.

First note that in any case, for any x and y we have

Pr[Y = y,X = x] = Pr[CK(X) = y,X = x] = Pr[CK(x) = y,X = x] = Pr[CK(x) = y]Pr[X = x]

If C provides perfect secrecy, then, we deduce Pr[Y = y,X = x] = 1
#M

Pr[X = x]. By summing
this over x, we further obtain Pr[Y = y] = 1

#M
. So, Pr[Y = y,X = x] = Pr[Y = y]Pr[X = x]

for all x and y: X and Y are independent.
Conversely, if X and Y are independent, the above property gives

Pr[CK(X) = y]Pr[X = x] = Pr[Y = y]Pr[X = x] = Pr[Y = y,X = x] = Pr[CK(x) = y]Pr[X = x]

Since X has support M , we have Pr[X = x] 6= 0, so we can simplify by Pr[X = x] and get
Pr[CK(X) = y] = Pr[CK(x) = y] for all x and y. This implies that Pr[C−1

K (y) = x] does not
depend on x, so C−1

K (y) is uniformly distributed, for all y. So, Pr[CK(x) = y] = 1
#M

for all
x and y. Therefore, CK(x) is uniformly distributed for all x: C provides perfect secrecy as
defined in this exercise.

Q.2 Show that if C provides perfect secrecy, then it is perfect unbounded IND-secure.
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Since we have perfect secrecy, when b and r are fixed and k random, y is uniformly dis-
tributed whatever b. So, the distribution of b′ = A(y;r) does not depend on b when b and
r are fixed. So, Prk[ΓIND

0,r,k(A) = 1] = Prk[ΓIND
1,r,k(A) = 1] for all r. Thus, on average over r,

we have Prr,k[ΓIND
0,r,k(A) = 1] = Prr,k[ΓIND

1,r,k(A) = 1]. Therefore, we have perfect unbounded
IND-security.

Q.3 Show that if C is perfect unbounded IND-secure, then for all x1,x2,z∈M , we have that Pr[CK(x1)=
z] = Pr[CK(x2) = z] when K is uniformly distributed in K .
Hint: define a deterministic adversary Ax1,x2,z based on x1, x2, and z.

We define the following adversary A . First, A(;r) produces m0 = x1 and m1 = x2. Then,
A(y;r) = 1 if and only if y = z.
We have Prk[ΓIND

b,r,k(A) = 1] = Pr[CK(xb) = z]. Furthermore, since A is deterministic,
ΓIND

b,r,k(A) does not depend on r. So, Prr,k[ΓIND
b,r,k(A) = 1] = Pr[CK(xb) = z].

Since the cipher is perfect unbounded IND-secure, we have Prr,k[ΓIND
0,r,k(A) = 1] =

Prr,k[ΓIND
1,r,k(A) = 1]. Therefore, Pr[CK(x1) = z] = Pr[CK(x2) = z].

We deduce that the distribution of CK(x) does not depend on x.

Q.4 Deduce that if C is perfect unbounded IND-secure, then it provides perfect secrecy.

Given x0 and y, we have that

Pr[CK(x0) = y]×#M = ∑
x

Pr[CK(x) = y] = ∑
x

Pr[C−1
K (y) = x] = 1

The first equality coming from the previous question. So, Pr[CK(x0) = y] = 1/#M : CK(x0)
is uniformly distributed, for any x0. Therefore, we have perfect secrecy.
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