Advanced Cryptography - Final Exam

Solution

Serge Vaudenay

18.6.2012

- duration: 3h00
- any document is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 Some Decisional Diffie-Hellman Problems

For each of the group families below, give their order, say if they are cyclic, and show that the Decisional Diffie-Hellman problem (DDH) is not hard.
Q. $1 G=\mathbf{Z}_{p}^{*}$ where p is an odd prime number.
G has order $p-1$. We know from the theory of Galois fields theory that some elements generate \mathbf{Z}_{p}^{*}. So, it is cyclic.
We define $L(x) \in\{0,1\}$ such that $\left(\frac{x}{p}\right)=(-1)^{L(x)}$. If g is a generator of Z_{p}^{*}, we have $L\left(g^{x}\right)=$ $x \bmod 2$ for all x. If (X, Y, Z) is such that $X=g^{x}, Y=g^{y}, Z=g^{x y}$, we must have $L(Z)=$ $L(X) L(Y)$. If (X, Y, Z) is random in \mathbf{Z}_{p}^{3}, we have $L(Z)=L(X) L(Y)$ with probability $\frac{1}{2}$. So, a distinguisher checking that $L(Z)=L(X) L(Y)$ given (g, X, Y, Z) has an advantage of $\frac{1}{2}$ to distinguish a Diffie-Hellman tuple from a random one.
Q. $2 G=\{-1,+1\} \times H$ where H is a cyclic group of odd prime order q.
G has order $2 q$. If h is a generator of H, we can check that $g=(-1, h)$ is a generator of $G:$ for $y=\left((-1)^{b}, x\right)$, let α be such that $x=h^{\alpha}$. If $b=\alpha \bmod 2$, then $g^{\alpha}=y$. Otherwise, $g^{\alpha+q}=y$.
Let $L\left((-1)^{b}, x\right)=b$. Again, a distinguisher checking that $L(Z)=L(X) L(Y)$ will output 1 with probability 1 for a Diffie-Hellman tuple (X, Y, Z) and with probability $\frac{1}{2}$ for a random one. So, the advantage is $\frac{1}{2}$.
Q. $3 G=\mathbf{Z}_{q}$ where q is a prime number.
Z_{q} has order q and 1 is a generator. For and integer x, the "logarithm" of x in basis 1 is x,
modulo q.
Since the discrete logarithm problem is easy to solve, we can design a trivial distinguisher
which checks whether $\log Z=(\log X)(\log Y)$. For a Diffie-Hellman tuple, it produces 1 with
probability 1 . For a random tuple, it produces 1 with probability $\frac{1}{q}$. So, the advantage is
$1-\frac{1}{q}$.

2 MAC Revisited

This exercise is inspired from Message Authentication, Revisited by Dodis, Kiltz, Pietrzak, and Wichs. Published in the proceedings of Eurocrypt'12 pp. 355-374, LNCS vol. 7237 Springer 2012.

Given a security parameter s, a set \mathcal{X}_{s} and two groups \mathscr{Y}_{s} and \mathcal{K}_{s}, we define a function family by a deterministic algorithm mapping (s, k, x) for $k \in \mathcal{K}_{s}$ and $x \in \mathcal{X}_{s}$ to some $y \in \mathscr{Y}_{s}$, in time bounded by a polynomial in terms of s. (By abuse of notation, we denote $y=f_{k}(x)$ and omit s.)

We say that this is a key-homomorphic function if for any s, any $x \in \mathcal{X}_{s}$, any $k_{1}, k_{2} \in \mathcal{K}_{s}$, and any integers a, b, we have

$$
f_{a k_{1}+b k_{2}}(x)=\left(f_{k_{1}}(x)\right)^{a}\left(f_{k_{2}}(x)\right)^{b}
$$

Given a function family f, a function ℓ, and a bit b, we define the following game.
Game wPRF ${ }_{\ell}(b)$:
pick random coins r
pick $x_{1}, \ldots, x_{\ell(s)} \in X_{s}$ uniformly
if $b=0$ then
pick $k \in \mathcal{K}_{s}$ uniformly
compute $y_{i}=f_{k}\left(x_{i}\right), i=1, \ldots, \ell(s)$
else
pick a random function $g: X_{s} \rightarrow \mathcal{Y}_{s}$
compute $y_{i}=g\left(x_{i}\right), i=1, \ldots, \ell(s)$
end if
$b^{\prime} \leftarrow \mathcal{A}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell(s)}, y_{\ell(s)}\right) ; r\right)$
Given some fixed b, r, and k or g, the game is deterministic and we define $\Gamma_{0, r, k}^{\mathrm{wPRF}}(\mathcal{A})$ or $\Gamma_{1, r, g}^{\mathrm{wPRF}}(\mathcal{A})$ as the outcome b^{\prime}. We say that f is a weak pseudorandom function (wPRF) if for any polynomially bounded function $\ell(s)$ and for any probabilistic polynomial-time adversary \mathcal{A}, in the above game we have that $\operatorname{Pr}_{r, k}\left[\Gamma_{0, r, k}^{w \operatorname{PRF}}(\mathcal{A})=1\right]-\operatorname{Pr}_{r, g}\left[\Gamma_{1, r, g}^{w \operatorname{PRF}}(\mathcal{A})=1\right]$ is negligible in terms of s. (I.e., the probability that $b^{\prime}=1$ hardly depends on b.)

In what follows, we assume a polynomially bounded algorithm Gen which given s generates a prime number q of polynomially bounded length and a (multiplicatively denoted) group G_{s} of order q with basic operations (multiplication, inversion, comparison) computable in polynomial time. We set $X_{s}=\mathscr{Y}_{s}=G_{s}$ and $\mathcal{K}_{s}=\mathbf{Z}_{q}$. We define $f_{k}(x)=x^{k}$. We refer to this as the DH-based function.
Q. 1 Show that the DH-based function is: 1- a function family which is 2- key-homomorphic.

Clearly, $f_{k}(x)$ can be computed in polynomial time using the square-and-multiply algorithm. For any $x \in \mathcal{X}_{s}, k_{1}, k_{2} \in \mathcal{K}_{s}$, and any integers a, b, we have

$$
\begin{aligned}
f_{a k_{1}+b k_{2}}(x) & =x^{a k_{1}+b k_{2}} \\
& =\left(x^{k_{1}}\right)^{a}\left(x^{k_{2}}\right)^{b} \\
& =\left(f_{k_{1}}(x)\right)^{a}\left(f_{k_{2}}(x)\right)^{b}
\end{aligned}
$$

So, we have the key-homomorphic property.
Q. 2 Given (g, X, Y, Z) where g generates G and with $X=g^{x}, Y=g^{y}$, and $Z=g^{z}$, show that by picking $\alpha, \beta \in \mathbf{Z}_{q}$ uniformly at random, then the pair $\left(g^{\alpha} X^{\beta}, Y^{\alpha} Z^{\beta}\right)$ has a distribution which is uniform in G^{2} when $z \neq x y$. Show that it has the same distribution as $\left(T, T^{y}\right)$ with T uniformly distributed in the $z=x y$ case.

The distribution of $\left(g^{\alpha} X^{\beta}, Y^{\alpha} Z^{\beta}\right)$ is uniform in G^{2} if and only if the distribution of $(\alpha+$ $x \beta, y \alpha+z \beta)$ is uniform in \mathbf{Z}_{q}^{2}. We have

$$
\binom{\alpha+x \beta}{y \alpha+z \beta}=\left(\begin{array}{ll}
1 & x \\
y & z
\end{array}\right)\binom{\alpha}{\beta}
$$

and (α, β) is uniformly distributed in \mathbf{Z}_{q}^{2}. Since the matrix

$$
\left(\begin{array}{ll}
1 & x \\
y & z
\end{array}\right)
$$

is invertible when $z \neq x y$, we obtain that the pair is uniformly distributed in that case.
When $z=x y$, we observe that $T=g^{\alpha} X^{\beta}$ is uniformly distributed and that $Y^{\alpha} Z^{\beta}=T^{y}$.
Q. 3 Show that if the decisional Diffie-Hellman (DDH) problem is hard for Gen, then the DH-based function is a wPRF.
Hint: given an adversary \mathcal{A} playing the $\mathrm{wPRF}_{\ell(s)}(b)$ game, construct a distinguisher $\mathcal{D}(g, X, Y, Z)$ for the DDH problem by taking $x_{i}=g^{\alpha_{i}} X^{\beta_{i}}$ and $y_{i}=Y^{\alpha_{i}} Z^{\beta_{i}}, i=1, \ldots, \ell(s)$.

> Let \mathcal{A} be an adversary, let $\ell(s)$ be polynomially bounded.
> Let (g, X, Y, Z) be a DDH input to \mathcal{D}. We pick $\alpha_{i}, \beta_{i} \in \mathbf{Z}_{q}$ uniformly at random, $i=1, \ldots, \ell(s)$. We set $x_{i}=g^{\alpha_{i}} X^{\beta_{i}}$ and $y_{i}=Y^{\alpha_{i}} Z^{\beta_{i}}, i=1, \ldots, \ell(s)$. We set $b^{\prime}=$ $\mathcal{A}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell(s)}, y_{\ell(s)}\right) ; r\right)$ and return b^{\prime} as the output from \mathcal{D}.
> If X, Y, Z are uniformly distributed in G_{s}, then all $\left(x_{i}, y_{i}\right)$ are independent and uniformly distributed in G_{s}^{2} in the $z \neq x y$ case. If all x_{i} 's are pairwise distinct, this has the same distribution as in the wPRF game with $b=1$. Since $z=x y$ and $x_{i}=x_{j}$ occur with negligible probabilities and since $\ell(s)$ is polynomially bounded, we obtain that $\operatorname{Pr}[\mathcal{D}=1 \mid X, Y, Z$ uniform $]=$ $\Gamma_{1, r, g}^{\mathrm{wPRF}}(\mathcal{A})+\operatorname{negl}(s)$.
> If $X=g^{x}, Y=g^{y}, Z=g^{x y}$ for x, y random, then $y_{i}=x_{i}^{y}$ for all i, with all x_{i} independent and uniformly distributed and y is random. This corresponds to the distribution that \mathcal{A} sees in the $b=0$ case. So, $\operatorname{Pr}[\mathcal{D}=1 \mid X, Y$ uniform, $Z=\operatorname{DH}(X, Y)]=\Gamma_{0, r, k}^{\mathrm{wPRF}}(\mathcal{A})$ in that case.
> Finally, the DDH advantage of \mathcal{D} is $\Gamma_{1, r, g}^{\mathrm{wPRF}}(\mathcal{A})-\Gamma_{0, r, k}^{\mathrm{wPRF}}(\mathcal{A})+\operatorname{negl}(s)$. Due to the $D D H$ assumption, this must be negligible. So, $\Gamma_{1, r, g}^{\mathrm{wPR}}(\mathcal{A})-\Gamma_{0, r, k}^{\mathrm{wPF}}(\mathcal{A})$ is negligible for all \mathcal{A}. So, we have a wPRF.

Given a bit b, we define a MAC scheme based on the three polynomial algorithms KG (to generate a symmetric key), TAG (to compute the authenticated tag of a message based on a key), VRFY (to verify the tag of a message based on a key).

We define the following game.

Game IND-CMA (b):

1: pick random coins r

```
if \(b=0\) then
    run \(\mathrm{KG} \rightarrow k\)
    set up the oracle \(\operatorname{TAG}_{k}(\cdot)\)
    \(b^{\prime} \leftarrow \mathcal{A}^{\mathrm{TAG}_{k}(\cdot)}(; r)\)
else
    pick a random function \(g: X_{s} \rightarrow \mathscr{Y}_{s}\)
    set up the oracle \(g(\cdot)\)
    \(b^{\prime} \leftarrow \mathcal{A}^{g(\cdot)}(; r)\)
end if
```

Given some fixed b, r, and k or g, the game is deterministic and we define $\Gamma_{0, r, k}^{\mathrm{IND}-\mathrm{CMA}}(\mathcal{A})$ or $\Gamma_{1, r, g}^{\mathrm{IND}-\mathrm{CMA}}(\mathcal{A})$ as the outcome b^{\prime}. We say that the MAC is IND-CMA-secure if for any probabilistic polynomial adversary $\mathcal{A}, \operatorname{Pr}_{r, k}\left[\Gamma_{0, r, k}^{\mathrm{ND}-\mathrm{CMA}}(\mathcal{A})=1\right]-\operatorname{Pr}_{r, g}\left[\Gamma_{1, r, g}^{\mathrm{ND}-\mathrm{CMA}}(\mathcal{A})=1\right]$ is negligible in terms of the security parameter s.

We construct a MAC scheme from a key-homomorphic function family as follows:

$$
\begin{aligned}
\mathrm{KG} & : \text { pick uniformly at random and yield } k_{1}, k_{2} \in \mathcal{K}_{s} \\
\operatorname{TAG}_{k_{1}, k_{2}}(m) & : \text { pick } x \in X_{s}, \quad \text { yield }\left(x, f_{m k_{1}+k_{2}}(x)\right) \\
\operatorname{VRFY}_{k_{1}, k_{2}}(m,(x, y)) & : \text { say whether } f_{m k_{1}+k_{2}}(x)=y
\end{aligned}
$$

Q. 4 Assume that f is a key-homomorphic function family. Given an IND-CMA-adversary \mathcal{A} on the above MAC scheme, we define a wPRF-adversary \mathcal{B} on f as follows:

```
receives}\mp@subsup{x}{1}{},\mp@subsup{y}{1}{},\ldots,\mp@subsup{x}{\ell(s)}{},\mp@subsup{y}{\ell(s)}{
pick \mp@subsup{k}{1}{}\in\mp@subsup{\mathcal{K}}{s}{}\mathrm{ at random}
```

simulate $b^{\prime} \leftarrow \mathcal{A}$
for the i th chosen message query m from \mathcal{A}, simulate answer by $t_{i}=f_{k_{1}}\left(x_{i}\right)^{m_{i}} y_{i}$
(if there are more than $\ell(s)$ chosen message queries, abort)

Show that $\Gamma_{0, r, k_{1}}^{\mathrm{wPRF}}(\mathcal{B})=\Gamma_{0, r, k_{1}}^{\mathrm{IND}-\mathrm{CMA}}(\mathcal{A})$ and that $\Gamma_{1, r, g}^{\mathrm{wPRF}}(\mathcal{B})=\Gamma_{1, r, g}^{\mathrm{IND}-\mathrm{CMA}}(\mathcal{A})$.
If the y_{i} 's are computed from $f_{k}\left(x_{i}\right)$, then we clearly simulate the IND-CMA attack with the correct MAC scheme.
If the y_{i} 's are computed from $g\left(x_{i}\right)$ with a random function g, we observe that $x \mapsto f_{k_{1}}(x) g(x)$ is also a uniformly distributed function. So, we simulate the IND-CMA attack with an ideal MAC scheme.
Q. 5 Show that if f is a key-homomorphic wPRF, then the above construction is IND-CMA-secure.

We have already shown that for any IND-CMA adversary \mathcal{A} we have a wPRF adversary \mathcal{B} with same advantage. Since the function is a wPRF function, the advantage of \mathcal{B} must be negligible. Consequently, for any \mathcal{A}, its advantage is negligible. So, the MAC scheme is IND-CMA-secure.
Q. 6 Propose an IND-CMA-secure MAC scheme based on the decisional Diffie-Hellman problem.

We merge the two constructions and obtain the following scheme:

$$
\begin{gathered}
\mathrm{KG}: \text { pick and yield } k_{1}, k_{2} \in \mathbf{Z}_{q} \\
\operatorname{TAG}_{k_{1}, k_{2}}(m): \text { pick } x \in G_{s}, \quad \text { yield }\left(x, x^{m k_{1}+k_{2}}\right) \\
\operatorname{VRFY}_{k_{1}, k_{2}}(m,(x, y)): \text { say whether } x^{m k_{1}+k_{2}}=y
\end{gathered}
$$

Assuming that the DDH problem is hard on G, the MAC scheme is IND-CMA-secure.

3 Perfect Unbounded IND is Equivalent to Perfect Secrecy

Given a message block space \mathcal{M} and a key space \mathcal{K}, we define a block cipher as a deterministic algorithm mapping (k, x) for $k \in \mathcal{K}$ and $x \in \mathcal{M}$ to some $y \in \mathcal{M}$. We denote $y=C_{k}(x)$. The algorithm must be such that there exists another algorithm C_{k}^{-1} such that for all k and x, we have $C_{k}^{-1}\left(C_{k}(x)\right)=x$.

We say that C provides perfect secrecy if for each x, the random variable $C_{K}(x)$ is uniformly distributed in \mathcal{M} when the random variable K is uniformly distributed in \mathcal{K}.

Given a bit b, we define the following game.
Game IND (b) :
pick random coins r
pick $k \in \mathcal{K}$ uniformly
run $\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(; r)$
compute $y=C_{k}\left(m_{b}\right)$
run $b^{\prime} \leftarrow \mathcal{A}(y ; r)$
Given some fixed b, r, k, the game is deterministic and we define $\Gamma_{b, r, k}^{\mathrm{ND}}(\mathcal{A})$ as the outcome b^{\prime}. We say that C provides perfect unbounded IND-security if for any (unbounded) adversary \mathcal{A} playing the above game, we have $\operatorname{Pr}_{r, k}\left[\Gamma_{0, r, k}^{I N D}(\mathcal{A})=1\right]=\operatorname{Pr}_{r, k}\left[\Gamma_{1, r, k}^{I N D}(\mathcal{A})=1\right]$. (That is, the probability that $b^{\prime}=1$ does not depend on b.)
Q. 1 This question is to see the link with a more standard notion of perfect secrecy.

Let X be a random variable of support \mathcal{M}, let K be independent, and uniformly distributed in \mathcal{K}, and let $Y=C_{K}(X)$. Show that X and Y are independent if and only if C provides perfect secrecy as defined in this exercise.
Hint: first show that for all x and $y, \operatorname{Pr}[Y=y, X=x]=\operatorname{Pr}\left[C_{K}(x)=y\right] \operatorname{Pr}[X=x]$. Then, deduce that if C provides perfect secrecy, then Y is uniformly distributed which implies that X and Y are independent. Conversely, if X and Y are independent, deduce that for all x and y we have $\operatorname{Pr}\left[C_{K}(X)=y\right]=\operatorname{Pr}\left[C_{K}(x)=y\right]$. Deduce that $C_{K}^{-1}(y)$ is uniformly distributed then that $C_{K}(x)$ is uniformly distributed.

First note that in any case, for any x and y we have

$$
\operatorname{Pr}[Y=y, X=x]=\operatorname{Pr}\left[C_{K}(X)=y, X=x\right]=\operatorname{Pr}\left[C_{K}(x)=y, X=x\right]=\operatorname{Pr}\left[C_{K}(x)=y\right] \operatorname{Pr}[X=x]
$$

If C provides perfect secrecy, then, we deduce $\operatorname{Pr}[Y=y, X=x]=\frac{1}{\# \mathcal{M}} \operatorname{Pr}[X=x]$. By summing this over x, we further obtain $\operatorname{Pr}[Y=y]=\frac{1}{\# M}$. So, $\operatorname{Pr}[Y=y, X=x]=\operatorname{Pr}[Y=y] \operatorname{Pr}[X=x]$ for all x and $y: X$ and Y are independent.
Conversely, if X and Y are independent, the above property gives
$\operatorname{Pr}\left[C_{K}(X)=y\right] \operatorname{Pr}[X=x]=\operatorname{Pr}[Y=y] \operatorname{Pr}[X=x]=\operatorname{Pr}[Y=y, X=x]=\operatorname{Pr}\left[C_{K}(x)=y\right] \operatorname{Pr}[X=x]$
Since X has support \mathcal{M}, we have $\operatorname{Pr}[X=x] \neq 0$, so we can simplify by $\operatorname{Pr}[X=x]$ and get $\operatorname{Pr}\left[C_{K}(X)=y\right]=\operatorname{Pr}\left[C_{K}(x)=y\right]$ for all x and y. This implies that $\operatorname{Pr}\left[C_{K}^{-1}(y)=x\right]$ does not depend on x, so $C_{K}^{-1}(y)$ is uniformly distributed, for all y. So, $\operatorname{Pr}\left[C_{K}(x)=y\right]=\frac{1}{\# \mathcal{M}}$ for all x and y. Therefore, $C_{K}(x)$ is uniformly distributed for all x : C provides perfect secrecy as defined in this exercise.
Q. 2 Show that if C provides perfect secrecy, then it is perfect unbounded IND-secure.

Since we have perfect secrecy, when b and r are fixed and k random, y is uniformly distributed whatever b. So, the distribution of $b^{\prime}=\mathcal{A}(y ; r)$ does not depend on b when b and r are fixed. So, $\operatorname{Pr}_{k}\left[\Gamma_{0, r, k}^{\operatorname{IND}}(\mathcal{A})=1\right]=\operatorname{Pr}_{k}\left[\Gamma_{1, r, k}^{\mathrm{IND}}(\mathcal{A})=1\right]$ for all r. Thus, on average over r, we have $\operatorname{Pr}_{r, k}\left[\Gamma_{0, r, k}^{\mathrm{ND}}(\mathcal{A})=1\right]=\operatorname{Pr}_{r, k}\left[\Gamma_{1, r, k}^{\operatorname{ND}}(\mathcal{A})=1\right]$. Therefore, we have perfect unbounded IND-security.
Q. 3 Show that if C is perfect unbounded IND-secure, then for all $x_{1}, x_{2}, z \in \mathcal{M}$, we have that $\operatorname{Pr}\left[C_{K}\left(x_{1}\right)=\right.$ $z]=\operatorname{Pr}\left[C_{K}\left(x_{2}\right)=z\right]$ when K is uniformly distributed in \mathcal{K}.
Hint: define a deterministic adversary $\mathcal{A}_{x_{1}, x_{2}, z}$ based on x_{1}, x_{2}, and z.
We define the following adversary \mathcal{A}. First, $\mathcal{A}(; r)$ produces $m_{0}=x_{1}$ and $m_{1}=x_{2}$. Then, $\mathcal{A}(y ; r)=1$ if and only if $y=z$.
We have $\operatorname{Pr}_{k}\left[\Gamma_{b, r, k}^{\operatorname{ND}}(\mathcal{A})=1\right]=\operatorname{Pr}\left[C_{K}\left(x_{b}\right)=z\right]$. Furthermore, since \mathcal{A} is deterministic, $\Gamma_{b, r, k}^{\mathrm{ND}}(\mathcal{A})$ does not depend on r. So, $\operatorname{Pr}_{r, k}\left[\Gamma_{b, r, k}^{\mathrm{ND}}(\mathcal{A})=1\right]=\operatorname{Pr}\left[C_{K}\left(x_{b}\right)=z\right]$.
Since the cipher is perfect unbounded IND-secure, we have $\operatorname{Pr}_{r, k}\left[\Gamma_{0, r, k}^{\operatorname{IND}}(\mathcal{A})=1\right]=$ $\operatorname{Pr}_{r, k}\left[\Gamma_{1, r, k}^{\mathrm{ND}}(\mathcal{A})=1\right]$. Therefore, $\operatorname{Pr}\left[C_{K}\left(x_{1}\right)=z\right]=\operatorname{Pr}\left[C_{K}\left(x_{2}\right)=z\right]$.
We deduce that the distribution of $C_{K}(x)$ does not depend on x.
Q. 4 Deduce that if C is perfect unbounded IND-secure, then it provides perfect secrecy.

Given x_{0} and y, we have that

$$
\operatorname{Pr}\left[C_{K}\left(x_{0}\right)=y\right] \times \# \mathcal{M}=\sum_{x} \operatorname{Pr}\left[C_{K}(x)=y\right]=\sum_{x} \operatorname{Pr}\left[C_{K}^{-1}(y)=x\right]=1
$$

The first equality coming from the previous question. So, $\operatorname{Pr}\left[C_{K}\left(x_{0}\right)=y\right]=1 / \# \mathcal{M}: C_{K}\left(x_{0}\right)$ is uniformly distributed, for any x_{0}. Therefore, we have perfect secrecy.

