Advanced Cryptography — Final Exam Solution

Serge Vaudenay

18.6.2012

- duration: 3h00
- any document is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 Some Decisional Diffie-Hellman Problems

For each of the group families below, give <u>their order</u>, say <u>if they are cyclic</u>, and show that the Decisional Diffie-Hellman problem (DDH) <u>is not hard</u>.

Q.1 $G = \mathbf{Z}_p^*$ where *p* is an odd prime number.

G has order p - 1. We know from the theory of Galois fields theory that some elements generate \mathbb{Z}_{p}^{*} . So, it is cyclic.

We define $L(x) \in \{0,1\}$ such that $\left(\frac{x}{p}\right) = (-1)^{L(x)}$. If g is a generator of Z_p^* , we have $L(g^x) = x \mod 2$ for all x. If (X,Y,Z) is such that $X = g^x$, $Y = g^y$, $Z = g^{xy}$, we must have L(Z) = L(X)L(Y). If (X,Y,Z) is random in \mathbb{Z}_p^3 , we have L(Z) = L(X)L(Y) with probability $\frac{1}{2}$. So, a distinguisher checking that L(Z) = L(X)L(Y) given (g,X,Y,Z) has an advantage of $\frac{1}{2}$ to distinguish a Diffie-Hellman tuple from a random one.

Q.2 $G = \{-1, +1\} \times H$ where *H* is a cyclic group of odd prime order *q*.

G has order 2q. If h is a generator of H, we can check that g = (-1,h) is a generator of G: for $y = ((-1)^b, x)$, let α be such that $x = h^{\alpha}$. If $b = \alpha \mod 2$, then $g^{\alpha} = y$. Otherwise, $g^{\alpha+q} = y$. Let $L((-1)^b, x) = b$. Again, a distinguisher checking that L(Z) = L(X)L(Y) will output 1 with probability 1 for a Diffie-Hellman tuple (X, Y, Z) and with probability $\frac{1}{2}$ for a random one. So, the advantage is $\frac{1}{2}$.

Q.3 $G = \mathbf{Z}_q$ where q is a prime number.

 Z_q has order q and 1 is a generator. For and integer x, the "logarithm" of x in basis 1 is x, modulo q.

Since the discrete logarithm problem is easy to solve, we can design a trivial distinguisher which checks whether $\log Z = (\log X)(\log Y)$. For a Diffie-Hellman tuple, it produces 1 with probability 1. For a random tuple, it produces 1 with probability $\frac{1}{q}$. So, the advantage is $1 - \frac{1}{q}$.

2 MAC Revisited

This exercise is inspired from Message Authentication, Revisited by Dodis, Kiltz, Pietrzak, and Wichs. Published in the proceedings of Eurocrypt'12 pp. 355–374, LNCS vol. 7237 Springer 2012.

Given a security parameter *s*, a set X_s and two groups \mathcal{Y}_s and \mathcal{K}_s , we define a *function family* by a deterministic algorithm mapping (s, k, x) for $k \in \mathcal{K}_s$ and $x \in \mathcal{X}_s$ to some $y \in \mathcal{Y}_s$, in time bounded by a polynomial in terms of *s*. (By abuse of notation, we denote $y = f_k(x)$ and omit *s*.)

We say that this is a *key-homomorphic function* if for any *s*, any $x \in X_s$, any $k_1, k_2 \in \mathcal{K}_s$, and any integers *a*, *b*, we have

$$f_{ak_1+bk_2}(x) = (f_{k_1}(x))^a (f_{k_2}(x))^b$$

Given a function family f, a function ℓ , and a bit b, we define the following game.

Game wPRF $_{\ell}(b)$:

- 1: pick random coins *r*
- 2: pick $x_1, \ldots, x_{\ell(s)} \in X_s$ uniformly
- 3: **if** b = 0 **then**
- 4: pick $k \in \mathcal{K}_s$ uniformly
- 5: compute $y_i = f_k(x_i), i = 1, ..., \ell(s)$
- 6: else
- 7: pick a random function $g: X_s \to \mathcal{Y}_s$
- 8: compute $y_i = g(x_i), i = 1, ..., \ell(s)$
- 9: end if
- 10: $b' \leftarrow \mathcal{A}((x_1, y_1), \dots, (x_{\ell(s)}, y_{\ell(s)}); r)$

Given some fixed *b*, *r*, and *k* or *g*, the game is deterministic and we define $\Gamma_{0,r,k}^{\mathsf{wPRF}}(\mathcal{A})$ or $\Gamma_{1,r,g}^{\mathsf{wPRF}}(\mathcal{A})$ as the outcome *b'*. We say that *f* is a *weak pseudorandom function* (*wPRF*) if for any polynomially bounded function $\ell(s)$ and for any probabilistic polynomial-time adversary \mathcal{A} , in the above game we have that $\Pr_{r,k}[\Gamma_{0,r,k}^{\mathsf{wPRF}}(\mathcal{A}) = 1] - \Pr_{r,g}[\Gamma_{1,r,g}^{\mathsf{wPRF}}(\mathcal{A}) = 1]$ is negligible in terms of *s*. (I.e., the probability that b' = 1 hardly depends on *b*.)

In what follows, we assume a polynomially bounded algorithm Gen which given *s* generates a prime number *q* of polynomially bounded length and a (multiplicatively denoted) group G_s of order *q* with basic operations (multiplication, inversion, comparison) computable in polynomial time. We set $X_s = \mathcal{Y}_s = G_s$ and $\mathcal{K}_s = \mathbf{Z}_q$. We define $f_k(x) = x^k$. We refer to this as the *DH*-based function.

Q.1 Show that the DH-based function is: 1- a function family which is 2- key-homomorphic.

Clearly, $f_k(x)$ can be computed in polynomial time using the square-and-multiply algorithm. For any $x \in X_s$, $k_1, k_2 \in K_s$, and any integers a, b, we have

$$f_{ak_1+bk_2}(x) = x^{ak_1+bk_2} = (x^{k_1})^a (x^{k_2})^b = (f_{k_1}(x))^a (f_{k_2}(x))^b$$

So, we have the key-homomorphic property.

Q.2 Given (g, X, Y, Z) where g generates G and with $X = g^x$, $Y = g^y$, and $Z = g^z$, show that by picking $\alpha, \beta \in \mathbb{Z}_q$ uniformly at random, then the pair $(g^{\alpha}X^{\beta}, Y^{\alpha}Z^{\beta})$ has a distribution which is uniform in G^2 when $z \neq xy$. Show that it has the same distribution as (T, T^y) with T uniformly distributed in the z = xy case.

The distribution of $(g^{\alpha}X^{\beta}, Y^{\alpha}Z^{\beta})$ is uniform in G^2 if and only if the distribution of $(\alpha + x\beta, y\alpha + z\beta)$ is uniform in \mathbb{Z}^2_a . We have

$$\begin{pmatrix} \alpha + x\beta \\ y\alpha + z\beta \end{pmatrix} = \begin{pmatrix} 1 x \\ y z \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

and (α, β) is uniformly distributed in \mathbb{Z}_q^2 . Since the matrix

$$\begin{pmatrix} 1 x \\ y z \end{pmatrix}$$

is invertible when $z \neq xy$, we obtain that the pair is uniformly distributed in that case. When z = xy, we observe that $T = g^{\alpha}X^{\beta}$ is uniformly distributed and that $Y^{\alpha}Z^{\beta} = T^{y}$.

Q.3 Show that if the decisional Diffie-Hellman (DDH) problem is hard for Gen, then the DH-based function is a wPRF.

Hint: given an adversary \mathcal{A} playing the wPRF $_{\ell(s)}(b)$ game, construct a distinguisher $\mathcal{D}(g, X, Y, Z)$ for the DDH problem by taking $x_i = g^{\alpha_i} X^{\beta_i}$ and $y_i = Y^{\alpha_i} Z^{\beta_i}$, $i = 1, ..., \ell(s)$.

Let \mathcal{A} be an adversary, let $\ell(s)$ be polynomially bounded. Let (g,X,Y,Z) be a DDH input to \mathcal{D} . We pick $\alpha_i, \beta_i \in \mathbb{Z}_q$ uniformly at random, $i = 1, \dots, \ell(s)$. We set $x_i = g^{\alpha_i} X^{\beta_i}$ and $y_i = Y^{\alpha_i} Z^{\beta_i}$, $i = 1, \dots, \ell(s)$. We set $b' = \mathcal{A}((x_1, y_1), \dots, (x_{\ell(s)}, y_{\ell(s)}); r)$ and return b' as the output from \mathcal{D} . If X, Y, Z are uniformly distributed in G_s , then all (x_i, y_i) are independent and uniformly distributed in G_s^2 in the $z \neq xy$ case. If all x_i 's are pairwise distinct, this has the same distribution as in the wPRF game with b = 1. Since z = xy and $x_i = x_j$ occur with negligible probabilities and since $\ell(s)$ is polynomially bounded, we obtain that $\Pr[\mathcal{D} = 1|X, Y, Z$ uniform] = $\Gamma_{1,r,g}^{wPRF}(\mathcal{A}) + \operatorname{negl}(s)$. If $X = g^x, Y = g^y, Z = g^{xy}$ for x, y random, then $y_i = x_i^y$ for all i, with all x_i independent and uniformly distributed and y is random. This corresponds to the distribution that \mathcal{A} sees in the b = 0 case. So, $\Pr[\mathcal{D} = 1|X, Y$ uniform, $Z = DH(X, Y)] = \Gamma_{0,r,k}^{wPRF}(\mathcal{A})$ in that case. Finally, the DDH advantage of \mathcal{D} is $\Gamma_{1,r,g}^{wPRF}(\mathcal{A}) - \Gamma_{0,r,k}^{wPRF}(\mathcal{A})$ is negligible for all \mathcal{A} . So, we have a wPRF.

Given a bit *b*, we define a MAC scheme based on the three polynomial algorithms KG (to generate a symmetric key), TAG (to compute the authenticated tag of a message based on a key), VRFY (to verify the tag of a message based on a key).

We define the following game.

Game IND-CMA(b):

1: pick random coins r

2: **if** b = 0 **then** run KG $\rightarrow k$ 3: set up the oracle $\mathsf{TAG}_k(\cdot)$ 4: $b' \leftarrow \mathcal{A}^{\mathsf{TAG}_k(\cdot)}(;r)$ 5: 6: **else** pick a random function $g: X_s \to \mathcal{Y}_s$ 7: set up the oracle $g(\cdot)$ 8: $b' \leftarrow \mathcal{A}^{g(\cdot)}(;r)$ 9:

10: end if

Given some fixed *b*, *r*, and *k* or *g*, the game is deterministic and we define $\Gamma_{0,r,k}^{\mathsf{IND-CMA}}(\mathcal{A})$ or $\Gamma_{1,r,g}^{\mathsf{IND-CMA}}(\mathcal{A})$ as the outcome *b'*. We say that the MAC is IND-CMA-*secure* if for any probabilistic polynomial adversary \mathcal{A} , $\Pr_{r,k}[\Gamma_{0,r,k}^{\mathsf{IND-CMA}}(\mathcal{A}) = 1] - \Pr_{r,g}[\Gamma_{1,r,g}^{\mathsf{IND-CMA}}(\mathcal{A}) = 1]$ is negligible in terms of the security parameter s.

We construct a MAC scheme from a key-homomorphic function family as follows:

KG : pick uniformly at random and yield $k_1, k_2 \in \mathcal{K}_s$

 $\mathsf{TAG}_{k_1,k_2}(m)$: pick $x \in \mathcal{X}_s$, yield $(x, f_{mk_1+k_2}(x))$

 $VRFY_{k_1,k_2}(m,(x,y))$: say whether $f_{mk_1+k_2}(x) = y$

- Q.4 Assume that f is a key-homomorphic function family. Given an IND-CMA-adversary \mathcal{A} on the above MAC scheme, we define a wPRF-adversary \mathcal{B} on f as follows:
 - 1: receives $x_1, y_1, ..., x_{\ell(s)}, y_{\ell(s)}$
 - 2: pick $k_1 \in \mathcal{K}_s$ at random
 - 3: simulate $b' \leftarrow \mathcal{A}$

for the *i*th chosen message query *m* from \mathcal{A} , simulate answer by $t_i = f_{k_i}(x_i)^{m_i} y_i$

(if there are more than $\ell(s)$ chosen message queries, abort) Show that $\Gamma_{0,r,k_1}^{\mathsf{wPRF}}(\mathcal{B}) = \Gamma_{0,r,k_1}^{\mathsf{IND-CMA}}(\mathcal{A})$ and that $\Gamma_{1,r,g}^{\mathsf{wPRF}}(\mathcal{B}) = \Gamma_{1,r,g}^{\mathsf{IND-CMA}}(\mathcal{A})$.

If the y_i 's are computed from $f_k(x_i)$, then we clearly simulate the IND-CMA attack with the correct MAC scheme.

If the y_i 's are computed from $g(x_i)$ with a random function g, we observe that $x \mapsto f_{k_1}(x)g(x)$ is also a uniformly distributed function. So, we simulate the IND-CMA attack with an ideal MAC scheme.

Q.5 Show that if f is a key-homomorphic wPRF, then the above construction is IND-CMA-secure.

We have already shown that for any IND-CMA adversary \mathcal{A} we have a wPRF adversary $\mathcal B$ with same advantage. Since the function is a wPRF function, the advantage of $\mathcal B$ must be negligible. Consequently, for any A, its advantage is negligible. So, the MAC scheme is IND-CMA-secure.

Q.6 Propose an IND-CMA-secure MAC scheme based on the decisional Diffie-Hellman problem.

We merge the two constructions and obtain the following scheme: KG : pick and yield $k_1, k_2 \in \mathbb{Z}_a$ $\mathsf{TAG}_{k_1,k_2}(m)$: pick $x \in G_s$, yield $(x, x^{mk_1+k_2})$ $\mathsf{VRFY}_{k_1,k_2}(m,(x,y))$: say whether $x^{mk_1+k_2} = y$

Assuming that the DDH problem is hard on G, the MAC scheme is IND-CMA-secure.

3 Perfect Unbounded IND is Equivalent to Perfect Secrecy

Given a message block space \mathcal{M} and a key space \mathcal{K} , we define a *block cipher* as a deterministic algorithm mapping (k,x) for $k \in \mathcal{K}$ and $x \in \mathcal{M}$ to some $y \in \mathcal{M}$. We denote $y = C_k(x)$. The algorithm must be such that there exists another algorithm C_k^{-1} such that for all k and x, we have $C_k^{-1}(C_k(x)) = x$.

We say that *C* provides *perfect secrecy* if for each *x*, the random variable $C_K(x)$ is uniformly distributed in \mathcal{M} when the random variable *K* is uniformly distributed in \mathcal{K} .

Given a bit *b*, we define the following game.

Game IND(b):

- 1: pick random coins r
- 2: pick $k \in \mathcal{K}$ uniformly
- 3: run $(m_0, m_1) \leftarrow \mathcal{A}(; r)$
- 4: compute $y = C_k(m_b)$

5: run $b' \leftarrow \mathcal{A}(y;r)$

Given some fixed b, r, k, the game is deterministic and we define $\Gamma_{b,r,k}^{\mathsf{IND}}(\mathcal{A})$ as the outcome b'. We say that *C* provides *perfect unbounded IND-security* if for any (unbounded) adversary \mathcal{A} playing the above game, we have $\Pr_{r,k}[\Gamma_{0,r,k}^{\mathsf{IND}}(\mathcal{A}) = 1] = \Pr_{r,k}[\Gamma_{1,r,k}^{\mathsf{IND}}(\mathcal{A}) = 1]$. (That is, the probability that b' = 1 does not depend on *b*.)

Q.1 This question is to see the link with a more standard notion of perfect secrecy.

Let *X* be a random variable of support \mathcal{M} , let *K* be independent, and uniformly distributed in \mathcal{K} , and let $Y = C_K(X)$. Show that *X* and *Y* are independent if and only if *C* provides perfect secrecy as defined in this exercise.

Hint: first show that for all *x* and *y*, $\Pr[Y = y, X = x] = \Pr[C_K(x) = y] \Pr[X = x]$. Then, deduce that if *C* provides perfect secrecy, then *Y* is uniformly distributed which implies that *X* and *Y* are independent. Conversely, if *X* and *Y* are independent, deduce that for all *x* and *y* we have $\Pr[C_K(X) = y] = \Pr[C_K(x) = y]$. Deduce that $C_K^{-1}(y)$ is uniformly distributed then that $C_K(x)$ is uniformly distributed.

First note that in any case, for any x and y we have

$$\Pr[Y = y, X = x] = \Pr[C_K(X) = y, X = x] = \Pr[C_K(x) = y, X = x] = \Pr[C_K(x) = y] \Pr[X = x]$$

If C provides perfect secrecy, then, we deduce $\Pr[Y = y, X = x] = \frac{1}{\#\mathcal{M}} \Pr[X = x]$. By summing this over x, we further obtain $\Pr[Y = y] = \frac{1}{\#\mathcal{M}}$. So, $\Pr[Y = y, X = x] = \Pr[Y = y] \Pr[X = x]$ for all x and y: X and Y are independent.

Conversely, if X and Y are independent, the above property gives

$$\Pr[C_K(X) = y] \Pr[X = x] = \Pr[Y = y] \Pr[X = x] = \Pr[Y = y, X = x] = \Pr[C_K(x) = y] \Pr[X = x]$$

Since X has support \mathcal{M} , we have $\Pr[X = x] \neq 0$, so we can simplify by $\Pr[X = x]$ and get $\Pr[C_K(X) = y] = \Pr[C_K(x) = y]$ for all x and y. This implies that $\Pr[C_K^{-1}(y) = x]$ does not depend on x, so $C_K^{-1}(y)$ is uniformly distributed, for all y. So, $\Pr[C_K(x) = y] = \frac{1}{\#\mathcal{M}}$ for all x and y. Therefore, $C_K(x)$ is uniformly distributed for all x: C provides perfect secrecy as defined in this exercise.

Q.2 Show that if C provides perfect secrecy, then it is perfect unbounded IND-secure.

Since we have perfect secrecy, when b and r are fixed and k random, y is uniformly distributed whatever b. So, the distribution of $b' = \mathcal{A}(y;r)$ does not depend on b when b and r are fixed. So, $\Pr_k[\Gamma_{0,r,k}^{|\mathsf{ND}}(\mathcal{A}) = 1] = \Pr_k[\Gamma_{1,r,k}^{|\mathsf{ND}}(\mathcal{A}) = 1]$ for all r. Thus, on average over r, we have $\Pr_{r,k}[\Gamma_{0,r,k}^{|\mathsf{ND}}(\mathcal{A}) = 1] = \Pr_{r,k}[\Gamma_{1,r,k}^{|\mathsf{ND}}(\mathcal{A}) = 1]$. Therefore, we have perfect unbounded IND-security.

Q.3 Show that if *C* is perfect unbounded IND-secure, then for all $x_1, x_2, z \in \mathcal{M}$, we have that $\Pr[C_K(x_1) = z] = \Pr[C_K(x_2) = z]$ when *K* is uniformly distributed in \mathcal{K} .

Hint: define a deterministic adversary $\mathcal{A}_{x_1,x_2,z}$ based on x_1, x_2 , and z.

We define the following adversary \mathcal{A} . First, $\mathcal{A}(;r)$ produces $m_0 = x_1$ and $m_1 = x_2$. Then, $\mathcal{A}(y;r) = 1$ if and only if y = z. We have $\Pr_k[\Gamma_{b,r,k}^{\mathsf{IND}}(\mathcal{A}) = 1] = \Pr[C_K(x_b) = z]$. Furthermore, since \mathcal{A} is deterministic, $\Gamma_{b,r,k}^{\mathsf{IND}}(\mathcal{A})$ does not depend on r. So, $\Pr_{r,k}[\Gamma_{b,r,k}^{\mathsf{IND}}(\mathcal{A}) = 1] = \Pr[C_K(x_b) = z]$. Since the cipher is perfect unbounded IND-secure, we have $\Pr_{r,k}[\Gamma_{0,r,k}^{\mathsf{IND}}(\mathcal{A}) = 1] =$ $\Pr_{r,k}[\Gamma_{1,r,k}^{\mathsf{IND}}(\mathcal{A}) = 1]$. Therefore, $\Pr[C_K(x_1) = z] = \Pr[C_K(x_2) = z]$. We deduce that the distribution of $C_K(x)$ does not depend on x.

Q.4 Deduce that if C is perfect unbounded IND-secure, then it provides perfect secrecy.

Given x_0 and y, we have that $\Pr[C_K(x_0) = y] \times \#\mathcal{M} = \sum_x \Pr[C_K(x) = y] = \sum_x \Pr[C_K^{-1}(y) = x] = 1$

The first equality coming from the previous question. So, $\Pr[C_K(x_0) = y] = 1/\#\mathcal{M}: C_K(x_0)$ is uniformly distributed, for any x_0 . Therefore, we have perfect secrecy.