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1 Circular RSA Encryption

Let n = pq and d = e−1 mod ϕ(n) define an RSA key pair. For some reason, we need to encrypt p
with the plain RSA cryptosystem.

Q.1 If y decrypts to p, show that an adversary who has only the public key at disposal can decrypt y.
Hint: think modulo p.

If y = pe mod n, then y mod p = 0 and y mod q is in Z∗
q (since p and q are different prime

numbers, p is coprime with q so p is invertible modulo q, so y as well). Hence, gcd(y,n) = p
so the adversary recovers p easily.

2 The Goldwasser-Micali Cryptosystem

Consider the group Z∗
n. We recall that if m is an odd factor of n, then the Jacobi symbol x 7→

( x
m

)
is

a group homomorphism from Z∗
n to {−1,+1}. I.e.,

(
xy mod n

m

)
=
( x

m

)( y
m

)
. It further has the property

that
( x

mm′

)
=
( x

m

)( x
m′

)
. We consider that multiplication in Zn and the computation of the above Jacobi

symbol can each be done in O((logn)2).
Let s be a security parameter. We consider the following public-key cryptosystem.

Key Generation. Generate two different odd prime numbers p and q of bit size s, compute n = pq,
and find some z ∈ Z∗

n such that
(

z
p

)
=
(

z
q

)
=−1. The public key is (n,z) and the secret key is p.

Encryption. To encrypt a bit b ∈ {0,1}, pick r ∈U Z∗
n and compute c = r2zb mod n. The ciphertext

is c.
Decryption. To decrypt c, compute

(
c
p

)
and find b such that it equals (−1)b. The plaintext is b.

This cryptosystem is known as the Goldwasser-Micali cryptosystem.



Q.1 Show that the cryptosystem is correct. I.e., if the key generation gives (n,z) and p, if b is any bit, if
the encryption of b with the key (n,z) produces c, then the decryption of c with the key p produces
b.

By construction, we have n = pq,
(

z
p

)
= −1, and c ≡ r2zb (mod n). We have

(
c
p

)
=(

r2zb

p

)
since p divides n. Thus,

(
c
p

)
=

(
r2zb

p

)
=

(
z
p

)b

= (−1)b

So, the decryption of c produces b.

Q.2 Analyze the complexity of the three algorithms in terms of s.

Key generation: to generate the primes p and q of bit size s requires O(s4) by using Miller-
Rabin primality testing, square-and-multiply exponentiation, and schoolbook multiplica-
tion. The Legendre symbol requires O(s2) which is negligible, as well as computing n = pq.
So, key generation works in O(s4).
Encryption: this requires a constant number of multiplications which are O(s2).
Decryption: this requires a Legendre symbol, so O(s2) as well.

Q.3 Let N be the set of all n’s which could be generated by the key generation algorithm. Let Fact be
the problem in which an instance is specified by n ∈ N and the solution is the factoring of n.

Q.3a Define the key recovery problem KR related to the cryptosystem. For this, specify clearly what
is its set of instances and what is the solution of a given instance.

In the KR problem, an instance is a pair (n,z) such that n∈N and
(

z
p

)
=
(

z
q

)
=−1 where

n = pq is the factoring of n. The solution to the problem is p. Or, equivalently, q which plays
a symmetric role.

Q.3b Show that the KR problem is equivalent to the Fact problem. Give the actual Turing reduction
in both directions.
Clearly, factoring n solves the problem: by submitting n to an oracle solving Fact, we get p
and q so we can yield p.
Conversely, with an oracle solving the KR problem, we can define an algorithm to factor n.
For this, we just need to find one z satisfying

(
z
p

)
=
(

z
q

)
=−1 and feed (n,z) to the oracle

solving KR. By construction, we have( z
n

)
=

(
z
p

)(
z
q

)
= 1

If we pick a random z satisfying
( z

n

)
= 1, we have

(
z
p

)
=
(

z
q

)
but this can be 1 or −1. If

this is −1 (which happens with probability 1
2 ), feeding (n,z) to the KR oracle yield p. We

can check that p solve the Fact problem and stop. If it is +1, it is bad luck as we have a
bad z and we don’t know. Thus, feeding (n,z) to the KR oracle may give anything. However,
if it gives something which solves the Fact oracle, we are happy anyway and we can stop.
Otherwise, we can start again with a new z. Eventually, we find a good z and the solution to
Fact.
So, KR and Fact are equivalent.
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Q.4 Let QR be the problem in which an instance is specified by a pair (n,c) in which n ∈ N and( c
n

)
= 1. The problem is to decide whether or not c is a quadratic residue in Z∗

n.
Q.4a Define the decryption problem DP related to the cryptosystem. For this, specify clearly what

is its set of instances and what is the solution of a given instance.

In the DP problem, an instance is defined by a triplet (n,z,c) where n∈N (let write n= pq),
z ∈ Z∗

n is a non-quadratic residue with
( z

n

)
= 1, and c = r2zb mod n for some r ∈ Z∗

n and a
bit b. The problem is to find b.

Q.4b Show that the DP problem is equivalent to the QR problem. Give the actual Turing reduction
in both directions.
Clearly, with an oracle solving QR, we can solve DP: we just submit (n,c) to the QR oracle
and obtain b. Indeed, r2zb mod n is a quadratic residue if and only if b = 0.
To show the converse, we assume an oracle O solving the DP problem and construct an
algorithm to solve the QR one. Given a QR instance (n,c), we pick z ∈ Z∗

n such that
( z

n

)
= 1

and consider the function fz : y 7→ O(n,z,y).
If z is a quadratic residue, we observe that for any b, r2zb mod n is uniformly distributed in
the set of quadratic residues modulo n. So, this is independent from b. Thus, fz(r2zb mod n)
is a random bit independent from b. If now z is a non-quadratic residue, fz(r2zb mod n) = b.
By taking b uniformly distributed, we can easily identify in which case we are. We can thus
iterate until we have a good z which is a non-quadratic residue. Then, we can compute fz(c)
and get the solution to the QR problem.
So, DP and QR are equivalent.

3 Faulty Multiplier

Let B be a basis. Given some integers x0, . . . ,xn−1, we say that the sequence [xn−1, . . . ,x0] represents x
if

x =
n−1

∑
i=0

xiBi

We say that [xn−1, . . . ,x0] is a reduced sequence if 0 ≤ xi ≤ B−1 for all i = 0, . . . ,n−1. We say that a
number x contains a block a if there exists n and a reduced sequence [xn−1, . . . ,x0] representing x, and
some i such that a = xi. We consider the schoolbook algorithms for addition and multiplication. These
are the methods that children learn at school for B = 10 and reduced sequences. We extend them to
any B value.

We work with a microprocessor using a built-in 32× 32-bit to 64-bit hardware multiplication.
Each 32× 32-bit to 64-bit multiplication is called an elementary multiplication. So, in the next we
let B = 232. We assume that there is a bug such that the result is always correct except when the first
operand is a special a0 value and the second one is a special b0 value in which case the result is a
constant c0 which is not equal to a0b0.

Q.1 Let a,b,c,u,v be five 32-bit blocks. Let x be represented by [a,b,c] and y be represented by
[u,v]. Using the schoolbook multiplication algorithm in basis B to multiply x by y, give the list of
elementary multiplications which are required to compute xy.

The schoolbook algorithm makes u× [a,b,c,0] + v× [a,b,c]. So, it performs av, bv, cv as
in xv and also au, bu, cu as in xu. It obtains [au,bu,cu,0]+ [av,bv,cv] = [au,bu+av,cu+
bv,cv]. It then performs a reduction to obtain a reduced sequence representing xy.
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Q.2 Let w =

⌈√
b0B3−a0

B

⌉
and y be represented by [w,a0]. Assume that b0 ≤ B

4 − 1. Deduce that y

contains the block a0 and that y2 contains the block b0.
Hint: first show that √

(b0 +1)B−
√

b0B ≥ 1

then show that √
(b0 +1)B3 −a0

B
> w ≥

√
b0B3 −a0

B

and deduce that
√

(b0 +1)B3 > y ≥
√

b0B3.

Since [w,a0] is a reduced sequence representing y, a0 is trivially in y.
We have √

(b0 +1)B−
√

b0B =
B√

(b0 +1)B+
√

b0B

If b0 ≤ B
4 −1, the denominator is upper bounded by B. So,

√
(b0 +1)B−

√
b0B =

√
(b0 +1)B3 −a0

B
−
√

b0B3 −a0

B
≥ 1

Since w is the ceiling of
√

b0B3−a0
B , we obtain√
(b0 +1)B3 −a0

B
> w ≥

√
b0B3 −a0

B

Now, y = wB+a0. So, b0B3 ≤ y2 < (b0 +1)B3 from which we deduce that y2 starts with the
32-bit block b0. Clearly, y ends with the 32-bit block a0. It is unlikely that b0 appears in y,
nor that a0 appears in y2.

In what follows, we assume that y does not contain the block b0 and that y2 does not contain the
block a0.

Q.3 Assume we want to raise y to some power k modulo n using the square-and-multiply with scanning
of the bits of the exponent from left to right. The leading bit of the exponent k being 1, let b denote
the second leading bit of k.

Q.3a Give the list of all multiplications this algorithm does when scanning these two bits in the two
cases: i.e., for b = 0 and b = 1.

When scanning the first bit, it multiplies y by 1. The accumulator become equal to y. Then,
it squares the accumulator and looks at the second bit. If it is 0, it does nothing more.
Otherwise, it multiplies the accumulator by y. So, for b = 0, it computes 1×y, y2, and that’s
it. For b = 1, it computes 1× y, y2, and y2 × y.

Q.3b Show that for the y from Q.2, this algorithm is likely to compute yk mod n correctly when
b = 0 whereas it does a computation error when b = 1.

In the b = 1 case, it multiplies y containing a0 by y2 containing b0. Due to the schoolbook
algorithm, this requires the bogus a0b0 elementary operation so it makes an error. In the
b = 0 case, it never needs to multiply y by y2. So, it is unlikely that the bogus a0b0 operation
occurs.
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Q.4 We assume a tamper-proof device implementing the RSA decryption with CRT acceleration,
square-and-multiply with scanning of the bits of the exponent from left to right, and the school-
book multiplication algorithm.

Q.4a Assuming that the second leading bits of d mod (p−1) and d mod (q−1) are different, using
the y of Q.2, give an algorithm producing x such that xe mod n is equal to y modulo either p
or q but not modulo both.

The CRT exponentiation computes (y mod p)d mod (p−1) mod p and (y mod
q)d mod (q−1) mod q. Since y is small, y mod p = y mod q = y. So, it computes
yd mod (p−1) mod p and yd mod (q−1) mod q. If the second leading bits of d mod (p−1) and
d mod (q− 1) are different, one error will occur in exactly one of these operations. So,
after CRT reconstruction, the result x will be equal to yd modulo either p or q but not both.
So, xe mod n will be equal to y modulo either p or q but not both.

Q.4b Deduce a factoring attack on RSA using this device.

After getting x, we compute gcd(xe − y mod n,n) which is a non-trivial factor of n.

4 Trapdoor Sbox

Let n be an integer. We consider the set Zn
2 as a vector space. Given a vector x, xk denotes its k-th

component (which is a bit). Additions are implicitly takes modulo 2. Product of bits are also implicitly
taken modulo 2. The dot product α · x between two vectors means ∑n

k=1 αkxk. We also multiply a bit
by a vector by multiplying the bit to each component.

Let α,β,γ ∈ Zn
2. Let i and j be two fixed indices such that αi = β j = 1 and γ j = 0. Let w be the

total number of bits set to 1 in γ. Let A be the subset of Zn
2 of all tuples in which the i-th component is

zero. Let B be the subset of Zn
2 of all tuples in which the j-th component is zero. Let ϕ be a bijection

from A to B.
Let p be a function from Zn

2 to A defined by p(x)k = xk for all k 6= i and p(x)i = 0.
Let v = (0, . . . ,0,1,0, . . . ,0) ∈ Zn

2 be a constant vector, where v j = 1.
We construct a function S on Zn

2 as follows.

S(x) = ϕ(p(x))+

(
(α · x)+(β ·ϕ(p(x)))+ ∏

k:γk=1
ϕ(p(x))k

)
v

Q.1 Show that S is a permutation.
Hint: show that S(x)= S(x′) implies p(x)= p(x′) for any x and x′ and show that S(x+u)= S(x)+v
for a constant vector u and any x.

Let q be a function from Zn
2 to B defined by q(v)k = vk for all k 6= j and q(v) j = 0. Since

q is linear, since q(v) = 0, and since q(v) = v for v ∈ B, we have q(S(x)) = ϕ(p(x)). So,
S(x) = S(x′) implies ϕ(p(x)) = ϕ(p(x′)). Since ϕ is a bijection, this implies p(x) = p(x′).
So, either x = x′, or x and x′ only differ by their i-th bit.
Let u ∈ Zn

2 such that ui = 1 and p(u) is the null vector. Since p(x) = p(x+ u), we have
S(x+ u) = S(x)+ v. So, x and x+ u do not have the same S-image. Finally, S(x) = S(x′)
implies x = x′. That is, S is a permutation.
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Q.2 Compute LPS(α,β).
Hint: first give a simple expression of (α · x)+(β ·S(x)).

We have

β ·S(x) = β ·ϕ(p(x))+

(
(α · x)+(β ·ϕ(p(x)))+ ∏

k:γk=1
ϕ(p(x))k

)
β · v

Since β j = 1 and v j is the only component of v set to 1, we have β · v = 1. So,

β ·S(x) = β ·ϕ(p(x))+(α · x)+(β ·ϕ(p(x)))+ ∏
k:γk=1

ϕ(p(x))k = (α · x)+ ∏
k:γk=1

ϕ(p(x))k

Thus,
(α · x)+(β ·S(x)) = ∏

k:γk=1
ϕ(p(x))k

Since ϕ(p(x)) is uniformly distributed in B when x is uniformly distributed in Zn
2, and since

γ j = 0, we have Pr[(α · x)+(β ·S(x))] = 2−w where w is the number of components of γ set
to 1. Finally, we obtain

LPS(α,β) = (1−21−w)2

Q.3 Deduce a way to construct an Sbox with a given high LPS(α,β).

We select i, j such that αi = β j = 1. Then, we pick γ such that γ j = 0 and with many
components set to 1 (the more 1’s, the larger LP). Then, we pick a permutation ϕ from A to
B. The proposed construction for S is a permutation over Zn

2 which has a large LPS(α,β).
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