Advanced Cryptography - Final Exam

Serge Vaudenay

27.6.2013

- duration: 3h00
- any document is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 ElGamal using a Strong Prime

Let p be a large strong prime. I.e., p is a prime number and $q=\frac{p-1}{2}$ is prime as well.
Q. 1 Show that QR_{p} is a cyclic group.
Q. 2 Show that -1 is not a quadratic residue modulo p.
Q. 3 Show that there exists a bijection σ from $\{1, \ldots, q\}$ to QR_{p}, the group of quadratic residues in Z_{p}^{*}, such that for all $x, \sigma(x)=x$ or $\sigma(x)=-x$.
Q. 4 For $m \in\{1, \ldots, q\}$ and $x \in \mathrm{QR}_{p}$, give algorithms to compute $\sigma(m)$ and $\sigma^{-1}(x)$.
Q. 5 We consider the following variant of the ElGamal cryptosystem over the message space $\{1, \ldots, q\}$. Let g be a generator of QR_{p}. The secret key is $x \in \mathbf{Z}_{p-1}$. The public key is $y=g^{x} \bmod p$. To encrypt a message m, we pick $r \in \mathbf{Z}_{p-1}$, compute $u=g^{r} \bmod p$, and $v=\sigma(m) y^{r} \bmod p$. The ciphertext is the pair (u, v).
Describe the decryption algorithm.
Q. 6 Show that this variant is IND-CPA secure when the DDH problem is hard in QR_{p}.

2 BLS Signature

Let p be a prime number, G and G_{T} be two groups (with multiplicative notations) of order p, g be a generator of G, and e be a function from $G \times G$ to G_{T} such that

- (non-degenerate) there exists $a, b \in G$ such that $e(a, b) \neq 1$;
- (efficiently computable) e can be evaluated efficiently;
- (bilinear) $e(a b, c)=e(a, c) e(b, c)$ and $e(a, b c)=e(a, b) e(a, c)$ for all $a, b, c \in G$.

We assume that the size of p is polynomially bounded. We assume that we have efficient algorithms for group multiplication (in both groups), as well as for comparing group elements. We assume that a random oracle H maps any bitstring to a group element in G. We define a signature scheme as follows:
key generation: we pick the secret key $x \in \mathbf{Z}_{p}$ and the public key is $v=g^{x}$; signature algorithm: to sign a message m, we produce $\sigma=H(m)^{x}$; verification algorithm: to verify (v, m, σ), we check that $e(g, \sigma)=e(v, H(m))$.
Q. 1 Show that $e\left(g^{x}, g^{y}\right)=e(g, g)^{x y}$ for all $x, y \in \mathbf{Z}_{p}$.
Q. 2 Show that the algorithms in the signature scheme are efficient and that produced signatures are always correct.
Q. 3 Show that the Decisional Diffie-Hellman (DDH) problem is easy to solve in G.
Q. 4 For an attack using no chosen message, show that making an existential forgery implies solving the Computational Diffie-Hellman (CDH) problem. More precisely, given an algorithm $\mathcal{A}^{H}(g, v)=(m, \sigma)$ forging a valid signature σ for m under public key v with oracle access to H, we can construct an algorithm $\mathcal{B}\left(g, g^{x}, Y\right)$ to compute Y^{x}, with complexity comparable to the one of \mathcal{A} and a polynomially bounded overhead. (Assume \mathcal{A} works with probability 1.)
Hint: simulate $H\left(m^{\prime}\right)$ by $g^{r\left(m^{\prime}\right)} Y$ where r is a random function from $\{0,1\}^{*}$ to \mathbf{Z}_{p}.
Q. 5 If now \mathcal{A} works with probability ρ over the uniform distribution of X and H in G, show that we can construct some \mathcal{B}^{\prime} working with probability ρ as well, for any x and y.
Q. 6 Show that by selecting a biased function s from $\{0,1\}^{*}$ to $\{0,1\}$ and by now simulating H by $H\left(m^{\prime}\right)=g^{r\left(m^{\prime}\right)} Y^{s\left(m^{\prime}\right)}$, we can introduce chosen message attacks in the previous result: making existential forgeries under chosen message attacks implies solving the CDH problem. (The probability of the solving algorithm may be different though.)

3 PRF Programming

A function $\delta(s)$ is called negligible and we write $\delta(s)=\operatorname{negl}(s)$ if for any $c>0$, we have $|\delta(s)|=o\left(s^{-c}\right)$ as s goes to $+\infty$.

Let s be a security parameter. For simplicity of notations, we do not write s as an input of games and algorithms but it is a systematic input.

A family $\left(f_{k}\right)_{k \in\{0,1\}^{s}}$ of functions f_{k} from $\{0,1\}^{s}$ to $\{0,1\}^{s}$ is called a PRF (Pseudo Random Function) if for any probabilistic polynomial-time oracle algorithm \mathcal{A}, we have that

$$
\left|\operatorname{Pr}\left[\mathcal{A}^{f_{K}(\cdot)}=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f^{*}(\cdot)}=1\right]\right|=\operatorname{negl}(s)
$$

where $K \in\{0,1\}^{s}$ is uniformly distributed, f^{*} is a uniformly distributed function from $\{0,1\}^{s}$ to $\{0,1\}^{s}, f_{K}(\cdot)$ denotes the oracle returning $f_{K}(x)$ upon query x, and $f^{*}(\cdot)$ denotes the oracle returning $f^{*}(x)$ upon query x.

Given a PRF $\left(f_{k}\right)_{k \in\{0,1\}^{s}}$, we construct a family $\left(g_{k}\right)_{k \in\{0,1\}^{s}}$ by $g_{k}(x)=f_{k}(x)$ if $x \neq k$ and $g_{k}(k)=k$. The goal of the exercise is to prove that $\left(g_{k}\right)_{k \in\{0,1\}^{s}}$ is a PRF.

We define the PRF game played by \mathcal{A} for g, f, and f^{*} by

Game Γ^{g}
1: pick $K \in\{0,1\}^{s}$
: run $b=\mathcal{A}^{g_{K}(\cdot)}$
3: give b as output

Game Γ^{f}
1: pick $K \in\{0,1\}^{s}$
2: run $b=\mathcal{A}^{f_{K}(\cdot)}$
3: give b as output

Game Γ^{*}
1: pick $f^{*}:\{0,1\}^{s} \rightarrow\{0,1\}^{s}$
2: $\operatorname{run} b=\mathcal{A}^{f^{*}(\cdot)}$
3: give b as output

For each integer i, we define an algorithm \mathcal{A}_{i} (called a hybrid) which mostly simulates \mathcal{A} until it makes the i th query. More concretely, \mathcal{A}_{i} simulates every step and queries of \mathcal{A} while counting the number of queries. When the counter reaches the value i, \mathcal{A}_{i} does not make this query k but it stops and the queried value k is returned as the output of \mathcal{A}_{i}. If \mathcal{A} stops before making i queries, \mathcal{A}_{i} stops as well, with a special output \perp. We define the following games:

```
Game \(\Gamma_{i}^{f}\)
    1: pick \(K \in\{0,1\}^{s}\)
    Game \(\Gamma_{i}^{*}\)
    1: pick \(f^{*}:\{0,1\}^{s} \rightarrow\{0,1\}^{s}\)
    2: run \(k=\mathcal{A}_{i}^{f_{K}(\cdot)}\)
    3: if \(k=\perp\), stop and output 0
    4: pick \(x \in\{0,1\}^{s}\)
    5: if \(f_{k}(x)=f_{K}(x)\), stop and output 1
    6 : output 0
```

Game Γ_{i}^{*}
1: pick $f^{*}:\{0,1\}^{s} \rightarrow\{0,1\}^{s}$
2: run $k=\mathcal{A}_{i}^{f^{*}(\cdot)}$
3: if $k=\perp$, stop and output 0
4: pick $x \in\{0,1\}^{s}$
5: if $f_{k}(x)=f^{*}(x)$, stop and output 1
6: output 0

Let $F(\Gamma)$ be the event that any of the queries by \mathcal{A} in game Γ equals K. We assume that the number of queries by \mathcal{A} is bounded by some polynomial $P(s)$.
Q. 1 Show that $\left|\operatorname{Pr}\left[\Gamma^{f} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma^{*} \rightarrow 1\right]\right|=\operatorname{negl}(s)$.
Q. 2 Show that $\operatorname{Pr}\left[\Gamma^{g} \rightarrow 1 \mid \neg F\left(\Gamma^{g}\right)\right]=\operatorname{Pr}\left[\Gamma^{f} \rightarrow 1 \mid \neg F\left(\Gamma^{f}\right)\right]$ and $\operatorname{Pr}\left[\neg F\left(\Gamma^{g}\right)\right]=\operatorname{Pr}\left[\neg F\left(\Gamma^{f}\right)\right]$.
Q. 3 Deduce $\left|\operatorname{Pr}\left[\Gamma^{g} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma^{f} \rightarrow 1\right]\right| \leq \operatorname{Pr}\left[F\left(\Gamma^{f}\right)\right]$.
Q. 4 Show that $\operatorname{Pr}\left[F\left(\Gamma^{f}\right)\right] \leq \sum_{i=1}^{P(s)} \operatorname{Pr}\left[\Gamma_{i}^{f} \rightarrow 1\right]$.
Q. 5 Show that $\left|\operatorname{Pr}\left[\Gamma_{i}^{f} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma_{i}^{*} \rightarrow 1\right]\right|=\operatorname{neg}(s)$ for all $i \leq P(s)$.
Q. 6 Show that $\operatorname{Pr}\left[\Gamma_{i}^{*} \rightarrow 1\right]=\operatorname{negl}(s)$ for all $i \leq P(s)$.
Q. 7 Deduce $\left|\operatorname{Pr}\left[\Gamma^{g} \rightarrow 1\right]-\operatorname{Pr}\left[\Gamma^{*} \rightarrow 1\right]\right|=\operatorname{negl}(s)$.

