Advanced Cryptography — Final Exam

Serge Vaudenay

27.6.2013

— duration: 3h00

— any document is allowed

— a pocket calculator is allowed

— communication devices are not allowed

— the exam invigilators will not answer any technical question during the exam
— the answers to each exercise must be provided on separate sheets

— readability and style of writing will be part of the grade

— do not forget to put your name on every sheet!

1 ElGamal using a Strong Prime

Let p be a large strong prime. L.e., p is a prime number and ¢ = % is prime as well.
Q.1 Show that QR, is a cyclic group.
Q.2 Show that —1 is not a quadratic residue modulo p.
Q.3 Show that there exists a bijection ¢ from {1, ..., q} to QR,, the group of quadratic residues
P
in Zy, such that for all z, o(x) =z or o(z) = —=.
Q.4 For m € {1,...,q} and = € QR,,, give algorithms to compute o(m) and o~ !(z).
P
Q.5 We consider the following variant of the ElGamal cryptosystem over the message space
1,...,q}. Let g be a generator of QR,. The secret key is © € Z,_1. The public key is
g g P y P y
y = g* mod p. To encrypt a message m, we pick r € Z,_1, compute u = ¢g" mod p, and
v = o(m)y"” mod p. The ciphertext is the pair (u,v).
Describe the decryption algorithm.
Q.6 Show that this variant is IND-CPA secure when the DDH problem is hard in QR,,.

2 BLS Signature

Let p be a prime number, G and G be two groups (with multiplicative notations) of order
p, g be a generator of G, and e be a function from G x G to G such that

— (non-degenerate) there exists a,b € G such that e(a,b) # 1;
— (efficiently computable) e can be evaluated efficiently;
— (bilinear) e(ab, c) = e(a, c)e(b, c) and e(a,bc) = e(a,b)e(a,c) for all a,b,c € G.

We assume that the size of p is polynomially bounded. We assume that we have efficient
algorithms for group multiplication (in both groups), as well as for comparing group elements.
We assume that a random oracle H maps any bitstring to a group element in G. We define
a signature scheme as follows:

key generation: we pick the secret key x € Z, and the public key is v = g*;
signature algorithm: to sign a message m, we produce o = H(m)";
verification algorithm: to verify (v, m, o), we check that e(g,0) = e(v, H(m)).

Q.1 Show that e(g”, g¥) = e(g, g)™ for all x,y € Z,,.

Q.2 Show that the algorithms in the signature scheme are efficient and that produced signa-
tures are always correct.

Q.3 Show that the Decisional Diffie-Hellman (DDH) problem is easy to solve in G.

Q.4 For an attack using no chosen message, show that making an existential forgery implies
solving the Computational Diffie-Hellman (CDH) problem. More precisely, given an algo-
rithm A (g, v) = (m, o) forging a valid signature ¢ for m under public key v with oracle
access to H, we can construct an algorithm B(g, ¢*,Y) to compute Y*, with complexity
comparable to the one of A and a polynomially bounded overhead. (Assume .4 works with
probability 1.)

Hint: simulate H(m') by g Y where r is a random function from {0, 1}* to Z,,.

Q.5 If now A works with probability p over the uniform distribution of X and H in G, show
that we can construct some B’ working with probability p as well, for any = and .

Q.6 Show that by selecting a biased function s from {0,1}* to {0,1} and by now simulating
H by Him/) = gT(m/)Ys(m/)7 we can introduce chosen message attacks in the previous
result: making existential forgeries under chosen message attacks implies solving the CDH
problem. (The probability of the solving algorithm may be different though.)

r(m’)

3 PRF Programming

A function §(s) is called negligible and we write §(s) = negl(s) if for any ¢ > 0, we have
|0(s)] = o(s7¢) as s goes to +o0.

Let s be a security parameter. For simplicity of notations, we do not write s as an input
of games and algorithms but it is a systematic input.

A family (fy)refo,13s of functions fi from {0,1}% to {0,1}" is called a PRF (Pseudo
Random Function) if for any probabilistic polynomial-time oracle algorithm A, we have that

| Pr[AfKO) = 1] — Pr[AT () = 1]| = negl(s)

where K € {0,1}* is uniformly distributed, f* is a uniformly distributed function from {0, 1}*
to {0,1}°, fx(-) denotes the oracle returning fx () upon query z, and f*(-) denotes the oracle
returning f*(x) upon query x.

Given a PRF (fk)refo,13s, We construct a family (gx)refo,13s by gx(z) = fr(x) if z # k
and gi(k) = k. The goal of the exercise is to prove that (gx)refo,13s is a PRF.

We define the PRF game played by A for g, f, and f* by

Game I Game I'f Game I'™
1: pick K € {0,1}* 1: pick K € {0,1}* 1: pick f*:{0,1}* — {0,1}*
2: run b = AIx() 2: tun b = Afx0) 2: run b = A0
3: give b as output 3: give b as output 3: give b as output

For each integer i, we define an algorithm A; (called a hybrid) which mostly simulates A
until it makes the ith query. More concretely, A; simulates every step and queries of .4 while
counting the number of queries. When the counter reaches the value i, A; does not make this
query k but it stops and the queried value k is returned as the output of A;. If A stops before
making i queries, A; stops as well, with a special output L. We define the following games:

Game I l-f Game [
1. pick K € {0,1}* L. pick f*:{0,1}* — {0,1}°
2: Tun k = .A{K(') 2: run k = Af*(')
3: if k = L, stop and output 0 3: if k = L, stop and output 0
4: pick z € {0,1}* 4: pick z € {0,1}*
5. if fy(x) = fx(z), stop and output 1 5: if fx(z) = f*(z), stop and output 1
6: output 0 6: output 0

Let F(I') be the event that any of the queries by A in game I" equals K. We assume that the
number of queries by A is bounded by some polynomial P(s).

Q.1 Show that |Pr[I"/ — 1] — Pr[I™ — 1]| = negl(s).

Q.2 Show that Pr[I"Y — 1|-~F(I'9)] = Pr[I"} — 1|=F(I'/)] and Pr[-F(I'9)] = Pr[-F(I')].
Q.3 Deduce |Pr[I"9 — 1] — Pr[I'f — 1]| < Pr[F(I'7)].

Q.4 Show that Pr[F(I')] < S29 pr(rf — 1).

Q.5 Show that | Pr[I7 — 1] — Pr[I7 — 1]| = negl(s) for all i < P(s).

Q.6 Show that Pr[I* — 1] = negl(s) for all i < P(s).

Q.7 Deduce |Pr[I'Y — 1] — Pr[I™ — 1]| = negl(s).

