Advanced Cryptography — Final Exam

Serge Vaudenay

27.6.2013

- duration: 3h00
- any document is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 ElGamal using a Strong Prime

Let p be a large strong prime. I.e., p is a prime number and $q = \frac{p-1}{2}$ is prime as well.

- **Q.1** Show that QR_p is a cyclic group.
- **Q.2** Show that -1 is not a quadratic residue modulo p.
- **Q.3** Show that there exists a bijection σ from $\{1, \ldots, q\}$ to QR_p , the group of quadratic residues in \mathbb{Z}_p^* , such that for all x, $\sigma(x) = x$ or $\sigma(x) = -x$.
- **Q.4** For $m \in \{1, ..., q\}$ and $x \in QR_p$, give algorithms to compute $\sigma(m)$ and $\sigma^{-1}(x)$.
- **Q.5** We consider the following variant of the ElGamal cryptosystem over the message space $\{1,\ldots,q\}$. Let g be a generator of QR_p . The secret key is $x\in \mathbf{Z}_{p-1}$. The public key is $y=g^x \bmod p$. To encrypt a message m, we pick $r\in \mathbf{Z}_{p-1}$, compute $u=g^r \bmod p$, and $v=\sigma(m)y^r \bmod p$. The ciphertext is the pair (u,v).
 - Describe the decryption algorithm.
- Q.6 Show that this variant is IND-CPA secure when the DDH problem is hard in QR_p .

2 BLS Signature

Let p be a prime number, G and G_T be two groups (with multiplicative notations) of order p, g be a generator of G, and e be a function from $G \times G$ to G_T such that

- (non-degenerate) there exists $a, b \in G$ such that $e(a, b) \neq 1$;
- (efficiently computable) e can be evaluated efficiently;
- (bilinear) e(ab, c) = e(a, c)e(b, c) and e(a, bc) = e(a, b)e(a, c) for all $a, b, c \in G$.

We assume that the size of p is polynomially bounded. We assume that we have efficient algorithms for group multiplication (in both groups), as well as for comparing group elements. We assume that a random oracle H maps any bitstring to a group element in G. We define a signature scheme as follows:

```
key generation: we pick the secret key x \in \mathbf{Z}_p and the public key is v = g^x; signature algorithm: to sign a message m, we produce \sigma = H(m)^x; verification algorithm: to verify (v, m, \sigma), we check that e(g, \sigma) = e(v, H(m)).
```

- **Q.1** Show that $e(g^x, g^y) = e(g, g)^{xy}$ for all $x, y \in \mathbf{Z}_p$.
- **Q.2** Show that the algorithms in the signature scheme are efficient and that produced signatures are always correct.
- **Q.3** Show that the Decisional Diffie-Hellman (DDH) problem is easy to solve in G.
- **Q.4** For an attack using no chosen message, show that making an existential forgery implies solving the Computational Diffie-Hellman (CDH) problem. More precisely, given an algorithm $\mathcal{A}^H(g,v) = (m,\sigma)$ forging a valid signature σ for m under public key v with oracle access to H, we can construct an algorithm $\mathcal{B}(g,g^x,Y)$ to compute Y^x , with complexity comparable to the one of \mathcal{A} and a polynomially bounded overhead. (Assume \mathcal{A} works with probability 1.)
 - Hint: simulate H(m') by $g^{r(m')}Y$ where r is a random function from $\{0,1\}^*$ to \mathbf{Z}_p .
- **Q.5** If now \mathcal{A} works with probability ρ over the uniform distribution of X and H in G, show that we can construct some \mathcal{B}' working with probability ρ as well, for any x and y.
- **Q.6** Show that by selecting a biased function s from $\{0,1\}^*$ to $\{0,1\}$ and by now simulating H by $H(m') = g^{r(m')}Y^{s(m')}$, we can introduce chosen message attacks in the previous result: making existential forgeries under chosen message attacks implies solving the CDH problem. (The probability of the solving algorithm may be different though.)

3 PRF Programming

A function $\delta(s)$ is called negligible and we write $\delta(s) = \mathsf{negl}(s)$ if for any c > 0, we have $|\delta(s)| = o(s^{-c})$ as s goes to $+\infty$.

Let s be a security parameter. For simplicity of notations, we do not write s as an input of games and algorithms but it is a systematic input.

A family $(f_k)_{k \in \{0,1\}^s}$ of functions f_k from $\{0,1\}^s$ to $\{0,1\}^s$ is called a PRF (Pseudo Random Function) if for any probabilistic polynomial-time oracle algorithm \mathcal{A} , we have that

$$|\Pr[\mathcal{A}^{f_K(\cdot)} = 1] - \Pr[\mathcal{A}^{f^*(\cdot)} = 1]| = \mathsf{negl}(s)$$

where $K \in \{0,1\}^s$ is uniformly distributed, f^* is a uniformly distributed function from $\{0,1\}^s$ to $\{0,1\}^s$, $f_K(\cdot)$ denotes the oracle returning $f_K(x)$ upon query x, and $f^*(\cdot)$ denotes the oracle returning $f^*(x)$ upon query x.

Given a PRF $(f_k)_{k \in \{0,1\}^s}$, we construct a family $(g_k)_{k \in \{0,1\}^s}$ by $g_k(x) = f_k(x)$ if $x \neq k$ and $g_k(k) = k$. The goal of the exercise is to prove that $(g_k)_{k \in \{0,1\}^s}$ is a PRF.

We define the PRF game played by \mathcal{A} for g, f, and f^* by

Game Γ^g	Game Γ^f	Game Γ^*
1: pick $K \in \{0, 1\}^s$	1: pick $K \in \{0,1\}^s$	1: pick $f^*: \{0,1\}^s \to \{0,1\}^s$
2: run $b = \mathcal{A}^{g_K(\cdot)}$	2: run $b = \mathcal{A}^{f_K(\cdot)}$	2: run $b = \mathcal{A}^{f^*(\cdot)}$
3: give b as output	3: give b as output	3: give b as output

For each integer i, we define an algorithm \mathcal{A}_i (called a hybrid) which mostly simulates \mathcal{A} until it makes the ith query. More concretely, \mathcal{A}_i simulates every step and queries of \mathcal{A} while counting the number of queries. When the counter reaches the value i, \mathcal{A}_i does not make this query k but it stops and the queried value k is returned as the output of \mathcal{A}_i . If \mathcal{A} stops before making i queries, \mathcal{A}_i stops as well, with a special output \perp . We define the following games:

```
Game \Gamma_i^f Game \Gamma_i^*

1: pick K \in \{0,1\}^s 1: pick f^* : \{0,1\}^s \to \{0,1\}^s

2: run k = \mathcal{A}_i^{f_K(\cdot)} 2: run k = \mathcal{A}_i^{f^*(\cdot)}

3: if k = \bot, stop and output 0 3: if k = \bot, stop and output 0

4: pick x \in \{0,1\}^s 4: pick x \in \{0,1\}^s

5: if f_k(x) = f_K(x), stop and output 1

6: output 0 6: output 0
```

Let $F(\Gamma)$ be the event that any of the queries by \mathcal{A} in game Γ equals K. We assume that the number of queries by \mathcal{A} is bounded by some polynomial P(s).

```
Q.1 Show that |\Pr[\Gamma^f \to 1] - \Pr[\Gamma^* \to 1]| = \mathsf{negl}(s).

Q.2 Show that \Pr[\Gamma^g \to 1| \neg F(\Gamma^g)] = \Pr[\Gamma^f \to 1| \neg F(\Gamma^f)] and \Pr[\neg F(\Gamma^g)] = \Pr[\neg F(\Gamma^f)].

Q.3 Deduce |\Pr[\Gamma^g \to 1] - \Pr[\Gamma^f \to 1]| \leq \Pr[F(\Gamma^f)].

Q.4 Show that \Pr[F(\Gamma^f)] \leq \sum_{i=1}^{P(s)} \Pr[\Gamma^f_i \to 1].

Q.5 Show that |\Pr[\Gamma^f_i \to 1] - \Pr[\Gamma^*_i \to 1]| = \mathsf{negl}(s) for all i \leq P(s).

Q.6 Show that \Pr[\Gamma^*_i \to 1] = \mathsf{negl}(s) for all i \leq P(s).

Q.7 Deduce |\Pr[\Gamma^g \to 1] - \Pr[\Gamma^* \to 1]| = \mathsf{negl}(s).
```