
Advanced Cryptography — Final Exam

Serge Vaudenay

27.6.2013

– duration: 3h00
– any document is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– the answers to each exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

1 ElGamal using a Strong Prime

Let p be a large strong prime. I.e., p is a prime number and q = p−1
2 is prime as well.

Q.1 Show that QRp is a cyclic group.
Q.2 Show that −1 is not a quadratic residue modulo p.
Q.3 Show that there exists a bijection σ from {1, . . . , q} to QRp, the group of quadratic residues

in Z∗
p , such that for all x, σ(x) = x or σ(x) = −x.

Q.4 For m ∈ {1, . . . , q} and x ∈ QRp, give algorithms to compute σ(m) and σ−1(x).
Q.5 We consider the following variant of the ElGamal cryptosystem over the message space

{1, . . . , q}. Let g be a generator of QRp. The secret key is x ∈ Zp−1. The public key is
y = gx mod p. To encrypt a message m, we pick r ∈ Zp−1, compute u = gr mod p, and
v = σ(m)yr mod p. The ciphertext is the pair (u, v).
Describe the decryption algorithm.

Q.6 Show that this variant is IND-CPA secure when the DDH problem is hard in QRp.

2 BLS Signature

Let p be a prime number, G and GT be two groups (with multiplicative notations) of order
p, g be a generator of G, and e be a function from G×G to GT such that

– (non-degenerate) there exists a, b ∈ G such that e(a, b) 6= 1;
– (efficiently computable) e can be evaluated efficiently;
– (bilinear) e(ab, c) = e(a, c)e(b, c) and e(a, bc) = e(a, b)e(a, c) for all a, b, c ∈ G.

We assume that the size of p is polynomially bounded. We assume that we have efficient
algorithms for group multiplication (in both groups), as well as for comparing group elements.
We assume that a random oracle H maps any bitstring to a group element in G. We define
a signature scheme as follows:

key generation: we pick the secret key x ∈ Zp and the public key is v = gx;
signature algorithm: to sign a message m, we produce σ = H(m)x;
verification algorithm: to verify (v,m, σ), we check that e(g, σ) = e(v,H(m)).

Q.1 Show that e(gx, gy) = e(g, g)xy for all x, y ∈ Zp.
Q.2 Show that the algorithms in the signature scheme are efficient and that produced signa-

tures are always correct.
Q.3 Show that the Decisional Diffie-Hellman (DDH) problem is easy to solve in G.
Q.4 For an attack using no chosen message, show that making an existential forgery implies

solving the Computational Diffie-Hellman (CDH) problem. More precisely, given an algo-
rithm AH(g, v) = (m,σ) forging a valid signature σ for m under public key v with oracle
access to H, we can construct an algorithm B(g, gx, Y) to compute Y x, with complexity
comparable to the one of A and a polynomially bounded overhead. (Assume A works with
probability 1.)
Hint: simulate H(m′) by gr(m

′)Y where r is a random function from {0, 1}∗ to Zp.
Q.5 If now A works with probability ρ over the uniform distribution of X and H in G, show

that we can construct some B′ working with probability ρ as well, for any x and y.
Q.6 Show that by selecting a biased function s from {0, 1}∗ to {0, 1} and by now simulating

H by H(m′) = gr(m
′)Y s(m′), we can introduce chosen message attacks in the previous

result: making existential forgeries under chosen message attacks implies solving the CDH
problem. (The probability of the solving algorithm may be different though.)

3 PRF Programming

A function δ(s) is called negligible and we write δ(s) = negl(s) if for any c > 0, we have
|δ(s)| = o(s−c) as s goes to +∞.

Let s be a security parameter. For simplicity of notations, we do not write s as an input
of games and algorithms but it is a systematic input.

A family (fk)k∈{0,1}s of functions fk from {0, 1}s to {0, 1}s is called a PRF (Pseudo
Random Function) if for any probabilistic polynomial-time oracle algorithm A, we have that

|Pr[AfK(·) = 1]− Pr[Af∗(·) = 1]| = negl(s)

where K ∈ {0, 1}s is uniformly distributed, f∗ is a uniformly distributed function from {0, 1}s
to {0, 1}s, fK(·) denotes the oracle returning fK(x) upon query x, and f∗(·) denotes the oracle
returning f∗(x) upon query x.

Given a PRF (fk)k∈{0,1}s , we construct a family (gk)k∈{0,1}s by gk(x) = fk(x) if x 6= k
and gk(k) = k. The goal of the exercise is to prove that (gk)k∈{0,1}s is a PRF.

We define the PRF game played by A for g, f , and f∗ by

Game Γ g

1: pick K ∈ {0, 1}s
2: run b = AgK(·)

3: give b as output

Game Γ f

1: pick K ∈ {0, 1}s
2: run b = AfK(·)

3: give b as output

Game Γ ∗

1: pick f∗ : {0, 1}s → {0, 1}s
2: run b = Af∗(·)

3: give b as output

For each integer i, we define an algorithm Ai (called a hybrid) which mostly simulates A
until it makes the ith query. More concretely, Ai simulates every step and queries of A while
counting the number of queries. When the counter reaches the value i, Ai does not make this
query k but it stops and the queried value k is returned as the output of Ai. If A stops before
making i queries, Ai stops as well, with a special output ⊥. We define the following games:

Game Γ f
i

1: pick K ∈ {0, 1}s

2: run k = AfK(·)
i

3: if k = ⊥, stop and output 0
4: pick x ∈ {0, 1}s
5: if fk(x) = fK(x), stop and output 1
6: output 0

Game Γ ∗
i

1: pick f∗ : {0, 1}s → {0, 1}s

2: run k = Af∗(·)
i

3: if k = ⊥, stop and output 0
4: pick x ∈ {0, 1}s
5: if fk(x) = f∗(x), stop and output 1
6: output 0

Let F (Γ) be the event that any of the queries by A in game Γ equals K. We assume that the
number of queries by A is bounded by some polynomial P (s).

Q.1 Show that |Pr[Γ f → 1]− Pr[Γ ∗ → 1]| = negl(s).
Q.2 Show that Pr[Γ g → 1|¬F (Γ g)] = Pr[Γ f → 1|¬F (Γ f)] and Pr[¬F (Γ g)] = Pr[¬F (Γ f)].
Q.3 Deduce |Pr[Γ g → 1]− Pr[Γ f → 1]| ≤ Pr[F (Γ f)].

Q.4 Show that Pr[F (Γ f)] ≤
∑P (s)

i=1 Pr[Γ f
i → 1].

Q.5 Show that |Pr[Γ f
i → 1]− Pr[Γ ∗

i → 1]| = negl(s) for all i ≤ P (s).
Q.6 Show that Pr[Γ ∗

i → 1] = negl(s) for all i ≤ P (s).
Q.7 Deduce |Pr[Γ g → 1]− Pr[Γ ∗ → 1]| = negl(s).

